Title	Aluminum accumulation and its relationship with mineral plant nutrients in 12
	pteridophytes from Venezuela
Author	Elizabeth Olivares, Eder Peña, Eunice Marcano, Julián Mostacero, Guillermina Aguiar,
	Malfy Benítez, Elizabeth Rengifo
Journal	Environmental and Experimental Botany, Volume 65(1)
Abstract	The purpose of this study was to investigate the aluminum (Al) concentration in
	Lycopodium clavatum, Dicranopteris flexuosa, Sticherus nudus, Anemia villosa, Cyathea
	gibbosa, Pteridium arachnoideum, Pteris vittata, Thelypteris dentata, Blechnum
	occidentale, Elaphoglossum sporadolepis, Nephrolepis cordifolia and Polypodium
	<i>pseudoaureum</i> , species from 11 families with different phylogenetic position, found on
	soils with a high concentration of AI (up to 13 g kg-1 dry mass (DM)). When AI
	concentration and mineral nutrients in aerial organs were considered, pteridophytes were
	classified into three groups: group one included pteridophytes with Al concentrations over
	1000 mg kg-1 DW m then aerial organs, a ratio between Ar and essential plant nutrients such as Co. Mg and P higher than one and a $K/A1$ ratio between 0.68 and 2.56 mol mol 1.
	Such as Ca, Mg and F night than one and a K/Ai failo between 0.08 and 2.30 mor mor-1. In group 1 was the well known Al-accumulator L clavatum (Lycophyte) as well as the
	Neotropical ferns D flexuosa S nudus (both basal leptosporangiate ferns) and C gibbosa
	(core leptosporangiate tree fern) Group 2 ferns which accumulate Al over 1000 mg kg-1
	DM in their fronds, and had an Al/Ca and Al/Mg ratio <1 . Species in this group included
	<i>E. sporadolepis</i> and <i>N. cordifolia</i> (derived polypod ferns). Group 3, ferns classified as Al-
	excluders, showing Al concentration <782 mg kg-1 DM in the fronds, had Al/Ca and
	Al/Mg ratios <1, Al/P ratio =1 and a K/Al ratio between 18.10 and 80.36 mol mol-1. In
	group 3, were A. villosa (basal leptosporangiate fern) and the derived polypod ferns P.
	arachnoideum, P. vittata, T. dentata, B. occidentale and P. pseudoaureum. The
	translocation factor of Al from subterranean to aerial organs was up to 4 in S. nudus, and
	subterranean organs from <i>E. sporadolepis</i> showed the highest concentration of Al (12 g
	kg-1 DM). We coincide with early literature in that other criteria in addition to the Al
	concentration should be considered to define the Al accumulation, such as its relationship
	with macronutrients. For example, we propose the inclusion of K/Al ratio. We conclude
	that out of six Al-excluders five belonged to the derived polypods while two species from
	Polypodiales showed high Al concentrations. We reconfirm accumulation of Al in L.
	clavatum and C. gibbosa and discover two new Al-accumulating species in the more
	ancient ferns: S. nudus and D. flexuosa.
Year	2009
Dagaa	122 141
rages	152-141
keywords	Aluminum pteridophytes mineral plant nutrients
ncy wor us	r Multinum, proridophytos, finitoral plant nutrionts