Title	Monitoring of heavy metal concentrations in home outdoor air using moss bags
Author	Marcela Rivera, Harald Zechmeister, Mercedes Medina-Ramón, Xavier Basagaña, Maria
	Foraster, Laura Bouso, Teresa Moreno, Pascual Solanas, Rafael Ramos, Gunda
	Kollensperger, Alexandre Deltell, David Vizcaya, Nino Kunzli
Journal	Environmental Pollution, Vol. 159(4)
Abstract	"One monitoring station is insufficient to characterize the high spatial variation of
	traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens),
	deployed in a dense network, for the monitoring of metals in outdoor air and
	characterized metals ' long-term spatial distribution and its determinants in Girona,
	Spain. Mosses were exposed outside 23 homes for two months; NO2 was monitored for
	comparison. Metals were not highly correlated with NO2 and showed higher spatial
	variation than NO2. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn,
	and Zn and 72% of NO ₂ variability. Metals were strongly associated with the number of
	bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO2
	given their toxicological relevance, stronger association with local traffic and higher
	spatial variability. Monitoring heavy metals with mosses is appealing, particularly for
	long-term exposure assessment, as mosses can remain on site many months without
	maintenance. Research highlights Moss bags can be used to measure the metal's long-
	term spatial distribution within cities. Heavy metals in mosses are not highly correlated
	with ambient NO ₂ concentrations. Heavy metals show higher spatial variation and
	association with traffic than NO ₂ Bus lines in the nearest street explain 75–85% of Mo,
	Cr, Sb, Sn and Cu variability. Moss bags are useful for long-term at home exposure
	assessment in epidemiological studies. The long-term spatial distribution of heavy
	metals, measured with moss bags, is mainly determined by proximity to bus lines. "
Year	2011
Pages	954-962
keywords	Traffic-related air pollution, Outdoor exposure, Spatial distribution, Determinants,
	Particulate matter, Nitrogen dioxide

Title	Comparison of Epigeic Moss (Hypnum cupressiforme) and Lichen (Cladonia
	rangiformis) as Biomonitor Species of Atmospheric Metal Deposition
Author	Mahmut Coskun, Eiliv Steinnes, Munevver Coskun and Akin Cayir
Journal	Bulletin of Environmental Contamination and Toxicology, Volume 82(1)
Abstract	In the present work epigeic moss (Hypnum cupressiforme Hedw.) and epigeic lichen
	(Cladonia rangiformis Hoffm.) samples were collected simultaneously in the Thrace
	region, Turkey according to a regular sampling grid. Whereas the moss was found at all
	68 sampling sites, the lichen could be collected only at 25 of the sites, presumably
	because lichens are more sensitive than mosses with respect to air pollution and
	climatic variations. All elements showed higher accumulation in the moss than in the
	lichen whereas element inter-correlations were generally higher in the lichen. All
	considered the moss was judged to be a better choice than the lichen for biomonitoring
	of atmospheric deposition of metals in this case, and it is argued that mosses may be
	generally more suited than lichens for this purpose.
Year	2009
Pages	1-5
keywords	Hypnum cupressiforme Hedw, Cladonia rangiformis Hoffm, heavy metals