Title	Evaluation of cations and chelating agents as extracellular extractants for Cu,
	Pb, V and Zn in the sequential elution technique applied to the terrestrial moss
	Pseudoscleropodium purum
Author	Pérez-Llamazares A, Galbán- Malagón CJ, Aboal JR, Angel Fernández J,
	Carballeira A.
Journal	Ecotoxicology and Environmental Safety
Abstract	Three experiments were carried out to select the best extractant for use in the
	sequential elution technique, to enable extraction of Cu, Pb, V and Zn from the
	extracellular fraction of the terrestrial moss <i>Pseudoscleropodium purum</i> . The optimal
	concentrations of the extractants tested (CoCl2, NiCl2, Pb (NO3)2, SrCl2,
	dimercaprol, EDTA, penicillamine) were determined on the basis of the maximum
	extraction of Zn achieved without any alteration of the plasma membrane. The
	capacity of these agents (at the optimal concentrations established) to extract the
	extracellular fractions of Cu, Pb, V and Zn was then evaluated. Extraction with 10
	mM EDTA is recommended for all 4 elements considered. As a second option, the use
	of 50 mM penicillamine is recommended to extract Cu, 30 mM dimercaprol to extract
	Pb and V and 20 mM NiCl2 to extract Zn. It was also concluded that these results
	cannot be extrapolated to other cryptogams, and that separate assays are required.
Year	2010
Pages	507-14
keywords	Pseudoscleropodium purum, Cu, Pb, V, Zn

Title	Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis
	antipyretica) interface: Influence of water cationic composition (Ca, Mg, Na and pH)
Author	Daniel Ferreira, Philippe Ciffroy, Marie-Hélène Tusseau-Vuillemin, Cédric Garnier, Jean-
	Marie Garnier
Journal	Chemosphere, Volume 74(8)
Abstract	The present study investigated the effect of water cationic composition (Ca, Mg, Na, pH)
	on the bioaccumulation and elimination rates of copper by an aquatic moss (Fontinalis
	antipyretica), under laboratory conditions. For this purpose, mosses were exposed to
	copper at an environmentally relevant and usually non-toxic concentration (5 µg L-1) in
	natural waters where cationic composition and concentrations were varied. To describe

 kinetics, was developed and calibrated under a wide range of water cationic composition. Bioaccumulation rates of Cu in mosses were significantly reduced as the concentrations of competitive cations in solution increased. Hence, in hard-water, Ca and Mg cations play a protective role as they compete with Cu₂₊ ions for the absorption on transport sites at the organism—water interface. Based on the relationships between each major cation concentration and the exchange kinetics on mosses, the binding constants (KCiBL) of each competing cations to the biological surfaces were derived. Using the present cationic-dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117- 1124 keywords water cationic composition, bioaccumulation, water quality criteria 		copper bioaccumulation by aquatic mosses, a two-compartment model was the first-order
 Kinetics, was developed and calibrated under a wide range of water cationic composition. Bioaccumulation rates of Cu in mosses were significantly reduced as the concentrations of competitive cations in solution increased. Hence, in hard-water, Ca and Mg cations play a protective role as they compete with Cu₂₊ ions for the absorption on transport sites at the organism–water interface. Based on the relationships between each major cation concentration and the exchange kinetics on mosses, the binding constants (KCiBL) of each competing cations to the biological surfaces were derived. Using the present cationic-dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117- 1124 keywords water cationic composition, bioaccumulation, water quality criteria 		
 Bioaccumulation rates of Cu in mosses were significantly reduced as the concentrations of competitive cations in solution increased. Hence, in hard-water, Ca and Mg cations play a protective role as they compete with Cu2+ ions for the absorption on transport sites at the organism—water interface. Based on the relationships between each major cation concentration and the exchange kinetics on mosses, the binding constants (KCBL) of each competing cations to the biological surfaces were derived. Using the present cationic-dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117- 1124 keywords water cationic composition, bioaccumulation, water quality criteria 		kinetics, was developed and calibrated under a wide range of water cationic composition.
 competitive cations in solution increased. Hence, in hard-water, Ca and Mg cations play a protective role as they compete with Cu2+ ions for the absorption on transport sites at the organism–water interface. Based on the relationships between each major cation concentration and the exchange kinetics on mosses, the binding constants (KCiBL) of each competing cations to the biological surfaces were derived. Using the present cationic-dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117-1124 keywords water cationic composition, bioaccumulation, water quality criteria 		Bioaccumulation rates of Cu in mosses were significantly reduced as the concentrations of
Protective role as they compete with Cu2+ ions for the absorption on transport sites at the organism-water interface. Based on the relationships between each major cation concentration and the exchange kinetics on mosses, the binding constants (KCBL) of each competing cations to the biological surfaces were derived. Using the present cationic- dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions.Year2009Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria		competitive cations in solution increased. Hence, in hard-water, Ca and Mg cations play a
organism-water interface. Based on the relationships between each major cation concentration and the exchange kinetics on mosses, the binding constants (KCBL) of each competing cations to the biological surfaces were derived. Using the present cationic- dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions.Year2009Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria		protective role as they compete with Cu2+ ions for the absorption on transport sites at the
 concentration and the exchange kinetics on mosses, the binding constants (KCBL) of each competing cations to the biological surfaces were derived. Using the present cationic dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117-1124 keywords water cationic composition, bioaccumulation, water quality criteria 		organism-water interface. Based on the relationships between each major cation
 competing cations to the biological surfaces were derived. Using the present cationic-dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117-1124 keywords water cationic composition, bioaccumulation, water quality criteria 		concentration and the exchange kinetics on mosses, the binding constants (KCiBL) of each
dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions.Year2009Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria		competing cations to the biological surfaces were derived. Using the present cationic-
 the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Tages 1117-1124 water cationic composition, bioaccumulation, water quality criteria		dependant kinetic model, it is now feasible to incorporate water cationic composition in
Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions.Year2009Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria		the (re)interpretation of bryophytes contamination levels and in the (re)definition of Water
programmes. In the framework of future national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions.Year2009Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria		Quality Criteria (WQC) as illustrated through two selected examples of biomonitoring
 such flexible and mechanistic biomonitoring tool (integrating the protective effects of competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117-1124 keywords water cationic composition, bioaccumulation, water quality criteria 		programmes. In the framework of future national water quality guidelines revisions, a
 competing cations) may greatly improve the ability of regulators to derive site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions. Year 2009 Pages 1117-1124 keywords water cationic composition, bioaccumulation, water quality criteria 		such flexible and mechanistic biomonitoring tool (integrating the protective effects of
(metal) guidelines for protecting aquatic biota, while limiting the use of conservative assumptions.Year2009Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria		competing cations) may greatly improve the ability of regulators to derive site-specific Cu
assumptions.Year2009Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria		(metal) guidelines for protecting aquatic biota, while limiting the use of conservative
Year2009Pages1117- 1124keywordswater cationic composition, bioaccumulation, water quality criteria		assumptions.
Year2009Pages1117- 1124keywordswater cationic composition, bioaccumulation, water quality criteria		
Pages1117-1124keywordswater cationic composition, bioaccumulation, water quality criteria	Year	2009
keywords water cationic composition, bioaccumulation, water quality criteria	Pages	1117-1124
	keywords	water cationic composition, bioaccumulation, water quality criteria

Title	Pectinous cell wall thickenings formation—A response of moss protonemata cells to
	lead
Author	Magdalena Krzeslowska, Marta Lenartowska, Ewa J. Mellerowicz, Slawomir
	Samardakiewicz, Adam Wozny
Journal	Environmental and Experimental Botany, Volume 6(1)

Abstract	Lead poisoning constitutes one of most detrimental environmental hazards to all living
	organisms. Plants developed a variety of avoidance and tolerance mechanisms that are
	activated in response to lead exposure. Plant cell walls were suggested to play important
	role in these reactions by creating an efficient barrier to lead entry to the protoplasts, but
	the molecular mechanisms involved in such shielding reaction have not been elucidated.
	Tip growing protomemata of Funaria hygrometrica (Hedw.) were used as model for
	studying effects of lead exposure on plant cell walls (CWs). Forty-eight hour-treatment 4
	μM PbCl ₂ resulted in the appearance of cell wall thickenings (CWT _s) at the tip of the
	apical cell, which is the lead entry site to the cell protoplast [Krzeslowska, M., Wozny, A.,
	1996. Lead uptake localization and changes in cell ultra structure of Funaria hygrometrica
	protonemata. Biol. Plant. 38, 253–259]. The nature of these thickenings differed from the
	one of cell wall in unexposed plants as revealed by immuno labelling with monoclonal
	antibodies and histochemical analyses. The most striking difference was the appearance
	high amount of low-esterified (JIM5 epitope) and unesterified (PAM1 epitope)
	homogalacturonan, which were absent from the tip cell wall of control protonemata and
	are known as the compounds able to bind and immobilise Pb2+. Furthermore, the cell wall
	thickenings commonly contained callose and at least two kinds of lipid compounds known
	as the substances preventing metal ions entry to the protoplast. Observations in
	transmission electron microscope (TEM) showed that CWTs contained a few distinct,
	varied structurally regions. The dominant one was the region of a granular structure-
	never found in the control CW. This region contained both the highest amount of JIM5
	pectins-and the most numerous lead deposits. In many cases gold particles, identifying
	JIM5 pectins, appeared to be bound to lead deposits. It indicated that JIM5 pectins which
	accumulated in CWTs were involved in immobilisation of high amounts of Pb2+. Because
	the region of lead accumulation occupied the largest volume of the CWTs, we concluded
	that CWTs appear to be a very important repository for Pb2+ in protonemata cells. Thus,
	we postulate that, CWTs localized at the tip of the apical cell-the main region of lead
	uptake [Krzeslowska, M., Wozny, A., 1996. Lead uptake localization and changes in cell
	ultrastructure of Funaria hygrometrica protonemata. Biol. Plant. 38, 253–259] rich in JIM5
	pectins, callose and lipids function as the effective barrier against lead ions penetration
	into the protonema protoplast. The findings substantiate previous hypotheses that lead ions
	can be sequestered in cell walls and point to the possibility that capacity for lead binding
	might increase in cell response to lead.

Year	2009
Pages	119-131
keywords	Funaria hygrometrica, Lead poisoning, protonemata cells
-	

Title	Responses to copper by the moss Plagiomnium cuspidatum: Hydrogen peroxide
	accumulation and the antioxidant defense system
Author	Yanfang Wu, Yahua Chen, Yanjun Yi, Zhenguo Shen
Journal	Chemosphere, Volume 7(9)
Abstract	Using both histochemical and cytochemical methods, we investigated the effects of copper
	(Cu) on the production of hydrogen peroxide (H_2O_2) and superoxide anion (O_2^{-}) in the
	leaves of the moss Plagiomnium cuspidatum. Cu treatment significantly increased the
	contents of total thiobarbituric acid-reactive substances and H ₂ O ₂ , as well as the activity of
	guaiacol peroxidase and superoxide dismutase (SOD). Native PAGE detected all three
	forms of SOD (Mn-SOD, Fe-SOD and CuZn-SOD) in P. cuspidatem, and the increase in
	the total SOD activity appeared to be mainly caused by an increase in CuZn-SOD activity.
	According to cytochemical results, H ₂ O ₂ - dependent CeCl3 precipitates were primarily
	localized in the plasma membranes and cell walls, and O2 was chiefly localized on the
	inner side of the plasma membrane and in the cytoplasm surrounding the chloroplasts.
	Experiments using imidazole as an inhibitor of NADPH oxidase, N-N-
	diethyldithiocarbamate as an inhibitor of Cu Zn-SOD, and 1,2-dihydroxybenzene-3,5-
	disulphonic acid as an O2 scavenger indicated that a partial source of H2O2 in the cell
	walls may be NADPH oxidase. The results also showed that peroxidase (POD) are
	involved in the detoxification of H2O2. Increased POD activity induced by Cu may
	remove excess H_2O_2 caused by Cu.
Year	2009
Pages	1260-1265
keywords	<i>Plagiomnium cuspidatum</i> , Cu, H_2O_2 , O_2^-

Title	Spatial structure of trace elements in extensive biomonitoring surveys with terrestrial mosses
Author	M.T. Boquete, J.A. Fernández, J.R. Aboal, C. Real, A. Carballeira
Journal	Science of The Total Environment, Volume 408(1)

Abstract	The size of the area affected by contamination processes mainly depends on the type of
	contaminant and the way it is emitted. In regular sampling, the size of the sampling grid
	will therefore interact with the scale at which the contamination processes are produced,
	for each contaminant, so that the grid will only enable characterization of those processes
	that occur at scales larger than the grid, i.e. large scale processes. The present study
	analysed the data corresponding to tissue concentrations of Cd, Cu, Fe, Hg, Mn, Pb, Se, V
	and Zn in the terrestrial moss Pseudoscleropodium purum obtained in regular sampling
	surveys with grids of different sizes (15 \times 15, 7.5 \times 7.5 km) plus a series of accessory
	points located at 1 km from the 15×15 km sampling grid; all sampling sites were located
	in Galicia and were sampled in March 2004. The objective of the study was to
	characterize the interaction between the scale of the sampling grid and the scale at which
	the contamination processes are produced, for each contaminant, to enable adjustment of
	the size of the grids to the scale at which the contamination processes are mainly
	produced. For this purpose, the spatial structure of the concentration of each element was
	analysed by use of semivariograms created with a robust estimator of the semi variance.
	The results of the study verified the existence of a real interaction between the scale of the
	sampling grid and the scale of the contamination processes. The results also demonstrated
	how in the study area, the contamination processes associated with Cd, Pb and V are
	generally small scale processes, whereas those associated with Cu, Hg and Se are
	generally large scale processes.
Year	2009
Pages	153-162
keywords	Pseudoscleropodium purum, heavy metals, contamination processes