Title	Spatial dispersal of airborne pollutants and their effects on growth and viability of
	lichen transplants along a rural highway in Norway
Author	Olena A. Yemets, Knut Asbjørn Solhaug and Yngvar Gauslaa
Journal	The Lichenologist, Vol. 46, Issue 06
Abstract	This study aims to quantify dispersal of airborne traffic-related elemental pollutants and
	concurring responses - relative growth rate (RGR), maximal quantum yield of PSII
	(F_v/F_m) , and chlorophylls (Chl <i>ab</i>) – in four epiphytic lichens (<i>Lobaria pulmonaria</i> ,
	Parmelia sulcata, Ramalina farinacea, Usnea dasopoga). Lichens were transplanted
	from 25 September to 26 March to 1.5 m tall stands in open farmlands at 10, 15, 30, 50
	and 100 m from the E6 highway (SE Norway), along three transects on each side usnea
	dasopoga of the road. The concentrations of most elements (Ca, Mg, Na, Fe, Al, Zn, Ba,
	Cu, V, Cr, Ni, Co, Sn, As, Mo) significantly increased with increasing proximity to the
	road. Elements in bold had elevated concentrations relative to controls, at least in some
	species at 100 m. The heavy metal accumulation increased from foliose to fruticose
	lichens in the order: P. sulcata>L. pulmonaria>R. farinacea \gg U. dasopoga. However,
	L. pulmonaria was the only species with strong pollutant-dependent reductions in
	growth, F_v/F_m , Chl ab, and Chl a/b-ratio. The RGR and viability parameters were
	adversely affected by the roadside environment near the road only (≤ 15 m), and only
	after substantial heavy metal accumulation. Measurement of metal accumulation in
	lichens is thus a far more sensitive way of monitoring road pollutants than recording
	growth and lichen viability. Despite strong species-specific contrasts in elemental
	concentrations, most road pollutant elements responded similarly to distance from the
	road in all species.
Year	2014
Pages	809-823
keywords	Biomonitoring, epiphytic lichens, heavy metals, relative growth rate, salt

Title	Lichens as sentinels for air pollution at remote alpine areas (Italy)
Author	Stefano Loppi
Journal	Environ Sci Pollut Res, Vol. 21

Abstract	The present study was undertaken with the aim of using epiphytic lichens as sentinels
	for air pollution at two remote alpine sites (1,400 and 1,800 m above sea level (asl)) of
	NW Italy. The results indicated that the site at 1,800 m prompted for early warning
	indications of biological changes. Although levels of the many elements assayed in
	samples of the lichen Pseudevernia furfuracea (L.) Zopf, ranging from
	minor elements (e.g., Al) to ultra-trace (e.g., Pt), were at normal levels, indications of a
	slowly worsening environment were given by the lichen biodiversity and by damage to
	cell membranes. The analysis of Pb isotopic ratios suggested that the origin of Pb
	accumulated in lichens is not local, but linked to the long-range transport by air masses.
	It was concluded that the origin of pollutants is from air mass coming from the Po plain
	of Italy and from densely populated areas of Switzerland and France.
Year	2014
Pages	2563–2571
keywords	Biodiversity, Cell membrane damage, Heavymetals, PGEs, REEs, Transboundary
	pollution

Title	Correlation among carbon, nitrogen, sulphur and physiological parameters of
	Rinodina sophodes found at Kanpur city, India
Author	Satya, D.K. Upreti
Journal	Journal of Hazardous Materials, Volume 169(1-3)
Abstract	Accumulation of carbon, nitrogen and sulphur content in Rinodina sophodes, crustose
	poleotolerent lichen growing naturally in and around six sites of Kanpur city was
	estimated, and their influence on the photosynthetic pigments of the lichen was studied.
	Maximum carbon concentration was recorded at highly polluted area while higher
	accumulation of nitrogen was recorded near village in outskirt of the city having higher
	ammonia emission. The concentration of sulphur was not detected in most of the sites
	except a single site where it had a quite lower value (0.22%). Photosynthetic pigments
	(chlorophyll a and b) increased parallel to the level of traffic density. Multiple
	correlation analysis revealed that chlorophyll a had highly significant correlation (1%)
	with chlorophyll b ($r = 0.9986$) and total chlorophyll ($r = 0.9307$). Carbon is directly
	correlated with nitrogen ($r = 0.3035$), sulphur ($r = 0.1743$) and chlorophyll degradation
	(r = 0.2685) while negatively correlated with chlorophyll a (-0.3323), chlorophyll b $(r = 0.2685)$
	-0.3429) and total chlorophyll (r = -0.0824). Nitrogen showed negative correlation
	between all photosynthetic pigments and chlorophyll degradation, while in case of
	sulphur, it was high positive correlation at 1% with chlorophyll degradation (0.9445).
Year	2009
Pages	1088- 1092
keywords	carbon, nitrogen, sulphur, Rinodina sophodes, crustose poleotolerent lichen