Title	Preliminary enviromagnetic comparison of the moss, lichen, and filter fabric
	bags to air pollution monitoring
Author	Hanna Helena Salo
Journal	International Journal of Geography, Vol 192, No. 2
Abstract	Air quality and anthropogenic air pollutants are usually investigated by passive biomonitoring which utilizes native species. Active biomonitoring, instead, refers to the use of transplants or bags in areas lacking native species. In Finland, the standardized moss bag technique SFS 5794 is commonly applied in active monitoring but there is still need for simpler and labor-saving sample material even on international scale. This article focuses on a preliminary comparison of the usability and collection efficiency of bags made of moss <i>Sphagnum papillosum</i> , lichen <i>Hypogymnia physodes</i> , and filter fabric (Filtrete TM) in active biomonitoring of air pollutants around an industrial site in Harjavalta, SW Finland. The samples are analyzed with magnetic (i.e. magnetic susceptibility, isothermal remanent magnetization, hysteresis loop and hysteresis parameters) methods highly suitable as a first-step tool for pollution studies. The results show that the highest magnetic susceptibility of each sample material is measured close to the industrial site. Furthermore, moss bags accumulate more magnetic material than lichen bags which, on the contrary, perform better at further distances. Filter fabric bags are tested only at 1 km sites indicating a good accumulation capability near the source. Pseudo-single-domain (PSD) magnetite is identified as the main magnetic mineral in all sample materials and good correlations are found between different bag types. To conclude, all three materials effectively accumulate air pollutants and are suitable for air quality studies. The results of this article provide a base for later studies which are needed in order to fully determine a new, efficient, and easy sample material for active monitoring.
Year	2014
Pages	154–163
keywords	Air pollution, Active monitoring, Bag technique, Magnetic methods, Material comparison

Title	Effect of 30 years of road traffic abandonment on epiphytic moss diversity
Author	Vítězslav Plášek & Arkadiusz Nowak & Marcin Nobis & Grzegorz Kusza &
	Katarzyna Kochanowska
Journal	Environ Monit Assess, Vol. 86
Abstract	Road traffic emits a cocktail of pollutants that can influence the vegetation and plant
	diversity in neighboring areas. However, the recovery potential of bryophytes after
	traffic abandonment is still little explored. In addition, the effects of the main
	pollutants of road verges, such as metals and salinity, on moss flora need to be
	investigated. In our study, we compared the moss richness and diversity in two closely
	related veteran tree allees of high conservation importance. The allees in Gryżów and
	Lubrza, Poland, were chosen because of their similarity in age, geographical location,
	type of surrounding areas, and tree species. The only difference was that the trees in
	Gryżów had not been exposed to direct road pollution for almost 30 years. The moss
	richness and diversity differed significantly between the sites. Altogether, 20 moss
	species were recorded on 229 trees, 17 species in Gryżów (abandoned road), and 13 in
	Lubrza (busy road). We found considerable differences between moss cover on the
	road-facing and opposite sides of tree trunks. In Lubrza, mosses on the road-facing
	side were very scarce. The moss cover in Gryżów was highly balanced between trunk
	sides as well as among trunk heights. Typical epiphytic species such as Bryum
	moravicum, Dicranoweisia cirrata, Leskea polycarpa, and Orthodicranum tauricum
	preferred the Gryżów tree stands, where they were present in numbers almost twice as
	high as that at Lubrza. The study shows that constructing a bypass road could be an
	effective conservation measure for veteran tree protection with their epiphytic moss
	flora.
Year	2014
Pages	8943–8959
keywords	Moss monitoring, Road salting, Tree conservation, Epiphytes, Tilia cordata,
	Orthotrichum, Poland

Title	Tissue S/N ratios and stable isotopes (d34S and d15N) of epilithic mosses
	(Haplocladium microphyllum) for showing air pollution in urban cities in
	Southern China
Author	Hua-Yun Xiao, Cong-Guo Tang, Hong-Wei Xiao, Yan-Li Wang, Xue-Yan Liu, Cong-

	Qiang Liu
Journal	Environmental Pollution, Vol. 158(5)
Abstract	In urban cities in Southern China, the tissue S/N ratios of epilithic mosses
	(Haplocladium microphyllum), varied widely from 0.11 to 0.19, are strongly related to
	some atmospheric chemical parameters (e.g. rainwater SO42-/NH4+ ratios, each
	people SO2 emission). If tissue S/N ratios in the healthy moss species tend to maintain
	a constant ratio of 0.15 in unpolluted area, our study cities can be divided into two
	classes: class I (S/N > 0.15, S excess) and class II (S/N < 0.15, N excess), possibly
	indicative of stronger industrial activity and higher density of population, respectively.
	Mosses in all these cities obtained S and N from rainwater at a similar ratio. Sulphur
	and N isotope ratios in mosses are found significantly linearly correlated with local
	coal d34S and NH4+- N wet deposition, respectively, indicating that local coal and
	animal NH3 are the major atmospheric S and N sources.
Year	2010
Pages	1026- 1032
keywords	d34S; d15N; S/N ratios; Moss; Coal; Acid rain; Industrial cities; South China

Title	Assessment of atmospheric sulfur with the epilithic moss Haplocladium
	microphyllum: Evidences from tissue sulfur and d34S analysis
Author	Xue-Yan Liu, Hua-Yun Xiao, Cong-Qiang Liu, Hong-Wei Xiao, Yan-Li Wang
Journal	Environmental Pollution, Volume 157(7)
Abstract	The application of geochemical signals in mosses is more and more popular to
	investigate the deposition of atmospheric pollutants, but it is unclear whether records
	of atmospheric sulfur in mosses differ between their diverse habitats. This study aimed
	to investigate the influence of growing condition on tissue sulfur and d 34S of
	Haplocladium microphyllum. Epilithic and terricolous mosses in open fields, mosses
	under different canopy conditions were considered. We found that tissue sulfur and
	d34S of mosses under different habitats were not consistent and could not be
	compared for atmospheric sulfur research with each other even collected at the same
	site, moss sulfur and d34S records would be distorted by subsoil and upper canopies in
	different degrees, which possibly mislead the interpretation of atmospheric sulfur level
	and sources. Consequently, mosses on open rocks can be used reliably to assess
	atmospheric-derived sulfur in view of their identical sulfur and d34S evidences.

	Mosses on open rocky surfaces are reliable bioindicators of atmospheric sulfur
	deposition.
Year	2009
Pages	2066- 2071
keywords	Atmospheric sulfur, Haplocladium microphyllum, Bioindicators