Title	Effect of 30 years of road traffic abandonment on epiphytic moss diversity
Author	Vítězslav Plášek & Arkadiusz Nowak & Marcin Nobis & Grzegorz Kusza &
	Katarzyna Kochanowska
Journal	Environ Monit Assess, Vol. 186
Abstract	Road traffic emits a cocktail of pollutants that can influence the vegetation and plant
	diversity in neighboring areas. However, the recovery potential of bryophytes after
	traffic abandonment is still little explored. In addition, the effects of the main
	pollutants of road verges, such as metals and salinity, on moss flora need to be
	investigated. In our study, we compared the moss richness and diversity in two closely
	related veteran tree allees of high conservation importance. The allees in Gryżów and
	Lubrza, Poland, were chosen because of their similarity in age, geographical location,
	type of surrounding areas, and tree species. The only difference was that the trees in
	Gryżów had not been exposed to direct road pollution for almost 30 years. The moss
	richness and diversity differed significantly between the sites. Altogether, 20 moss
	species were recorded on 229 trees, 17 species in Gryżów (abandoned road), and 13 in
	Lubrza (busy road). We found considerable differences between moss cover on the
	road-facing and opposite sides of tree trunks. In Lubrza, mosses on the road-facing
	side were very scarce. The moss cover in Gryżów was highly balanced between trunk
	sides as well as among trunk heights. Typical epiphytic species such as Bryum
	moravicum, Dicranoweisia cirrata, Leskea polycarpa, and Orthodicranum tauricum
	preferred the Gryżów tree stands, where they were present in numbers almost twice as
	high as that at Lubrza. The study shows that constructing a bypass road could be an
	effective conservation measure for veteran tree protection with their epiphytic moss
	flora.
Year	2014
Pages	8943-8959
keywords	Moss monitoring, Road salting, Tree conservation, Epiphytes, Tilia cordata,
	Orthotrichum, Poland

Title	Short-term effect of deep shade and enhanced nitrogen supply on Sphagnum
-------	--

	capillifolium morphophysiology
Author	Samuel Alexander Festing Bonnett, Nick Ostle and Chris Freeman
Journal	Plant Ecology, Vol. 207(2)
Abstract	Sphagnum capillifolium mesocosms collected from an ombrotrophic blanket bog were
	subjected to controlled photon flux densities (control and shaded) and nitrogen (low
	and high) treatments between November 2003 and August 2004. Shading significantly
	reduced biomass of S. capillifolium (P < 0.001), whilst nitrogen (N) supply
	significantly increased biomass ($P < 0.05$) suggesting that S. capillifolium was limited
	by N. There was no significant interaction between shading and N on biomass. S.
	capillifolium responded to shading via morphophysiological and biochemical
	alterations to the photosynthetic tissues such as (1) break down of anthocyanins
	involved in photoprotection of chloroplasts, (2) translocation of N from mineralized N
	or old tissues and (3) allocation of translocated N to photosynthetic pigments. The
	results suggest that S. capillifolium can tolerate both low and high light intensities, as
	well as high N supply via morphophysiological responses but does not acclimate to
	deep shade, since biomass was reduced. Anthocyanins rather than carotenoids appear to
	play an essential role in photoprotection with translocation serving as the important
	source of N. It has been suggested that global change in temperature and N availability
	may lead to increased vascular plant growth that could increase shade leading to a shift
	from Sphagnum spp. to vascular species in peatlands. However, the species S.
	capillifolium appears to tolerate deep shade and high N deposition due to the
	mechanisms shown here suggesting that this species may continue to persist in peatland
	ecosystems.
Year	2010
Pages	347-358
keywords	Sphagnum capillifolium mesocosms, nitrogen, short term effect