

Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil (2020)

Table 1: Assignment of characteristic absorption bands in infrared spectra.

Absorption band	Absorption band assignment
position/cm ⁻¹	Trosor peron band assignment
650-520	Stretching vibration of -OH (carbohydrates)
870	Carbonate substance
1020-970	Stretching vibration of C-O or stretching vibration of inorganic SiO (carbohydrates)
1080-1020	Asymmetric stretching vibration of C-O (phenols or alcohols)
1170-1150	Stretching vibrations of C-OH and C-O (aliphatic)
1220-1210	Asymmetric stretching vibration of C-O or deformable vibration of N-H (hydroxyl)
1250-1230	Stretching vibration of C-O or stretching vibration of SiO in organosilicon compounds (phenols)
1460–1400	Symmetric deformable vibrations of -CH ₃ and -CH ₂ , and asymmetric stretching vibration on hydroxyl group, or stretching vibration of C-OH (aliphatic)
1555–1540	Deformable vibration of -N-H (secondary amide)
1650–1600	Stretching vibration of -C = O, stretching vibration of C = C on aromatic group or antisymmetric vibration of organic carboxylate COO- (aldehyde, ketone)
1720–1690	Stretching vibration of $-C = O$, stretching vibration of $C = O$ in hydroxyl group (hydrogen bond formed between molecules and within molecules)
2870-2850	Symmetric stretching vibrations of -CH ₃ and -CH ₂
2900	Stretching vibration of C-H (aliphatic)
2930	Asymmetric stretching vibration of -CH ₂ (aliphatic)
2950	Asymmetric stretching vibration of -CH ₃ (aliphatic)
2060-3030	Stretching vibration of -C-H (aromatic nucleus)
3500–3300	Stretching vibrations of -COOH and -OH or stretching vibration of N-H and hydrogen bond association

According to Huang (2013), etc.

Table 2: Effect of biochar and crop straw addition on the biomass and yield of peanut.

Treatments		-	Biomass	Yield		
	Aboveground (g·plant ⁻¹)	Underground (g∙plant ⁻¹)			Number of effective pods	Number of seeds per plant
		Roots	Seeds	Shells	per plant	
T _{CK}	$9.45 \pm 1.54c$	$1.61 \pm 0.29c$	$6.26 \pm 0.46c$	$3.75 \pm 0.34b$	$15.00 \pm 0.58c$	$19.00 \pm 1.15c$
T _B	$17.61 \pm 2.33a$	$4.05 \pm 0.09a$	$11.17 \pm 0.55a$	$5.17 \pm 0.32a$	$21.00 \pm 0.57a$	$30.67 \pm 0.58a$
T _P	$14.00 \pm 1.38b$	$2.16 \pm 0.09b$	$9.91 \pm 1.62b$	4.62 ± 1.14 b	$15.33 \pm 1.53b$	$21.00 \pm 1.53b$
T_R	$14.97 \pm 1.25b$	$2.37 \pm 0.24b$	$10.50 \pm 0.82b$	$4.85 \pm 0.77b$	16.33 ± 0.57 b	22.00 ± 1.15 b

Treatments: TCK: control, TB: biochar addition, TP: peanut straw addition, TR: rice straw addition.

All values are presented as mean \pm standard error (n = 3), different letters in the same row indicate significant differences between treatments (P < 0.05).

Source: https://www.nature.com/articles/s41598-020-65631-8

Bioremediation of cadmium-contaminated paddy soil using an autotrophic and heterotrophic mixture (2020)

Table 1: Physiochemical properties of experimental soils, mean \pm standard deviation (n = 3)

Characteristics	Soil 1	Soil 2	Soil 3
Soil pH	5.96 ± 0.23	5.89 ± 1.05	6.05 ± 0.27
Soil ORP	290.30 ± 21.40	322.30 ± 20.60	250.80 ± 18.10
Available N (mg kg ⁻¹)	234.67 ± 60.48	214.33 ± 54.05	223.67 ± 36.75
Available P (mg kg ⁻¹)	0.64 ± 0.35	4.25 ± 3.15	1.32 ± 1.38
Available K (mg kg ⁻¹)	108.33 ± 17.90	101.67 ± 9.24	119.67 ± 19.22
Total N (g kg ⁻¹)	2.38 ± 0.33	2.12 ± 0.31	2.28 ± 0.14
Total P (g kg ⁻¹)	0.48 ± 0.02	0.66 ± 0.18	0.54 ± 0.02
Total K (g kg ⁻¹)	13.7 ± 0.20	14.7 ± 0.78	13.77 ± 0.71
OM (%)	4.66 ± 0.90	3.79 ± 0.39	4.26 ± 0.49
Total Cd (mg kg ⁻¹)	9.09 ± 0.44	10.03 ± 0.45	9.73 ± 1.62

Table 2: Mantel test of different environmental factors and the change of microbial community structure. The r value represents the correlation between different factors, and the p value indicates the correlation is significant

	r	p	
Total factors	0.366	0.001	
рH	0.447	0.001	
ORP	0.163	0.006	
Total Cd	0.357	0.001	

Source: https://pubs.rsc.org/en/Content/ArticleLanding/2020/RA/D0RA03935G#!divAbstract

Mechanism of Remediation of Cadmium-Contaminated Soil with Low-Energy Plant Snapdragon (2020)

Table 1: Enrichment Factor (EF) and Translocation Factor (TF) in snapdragons under different cadmium concentrations.

	TF	EF
Control	0.60	
1.0 mg/kg Cd	0.71	0.17
2.5 mg/kg Cd	0.81	0.10

Table 2: Effects of Cd on mineral nutrient accumulation in snapdragon tissues (mg/kg, DW).

	Zn	В	P	Fe	Mn	Ca	Cu	Mo	Mg
Root	=			_	_				
Control	386ª	85ª	211 ^a	510 ^a	168ª	622 ^a	25 ^a	119 ^a	6,593°
1.0 mg/kg	355 ^{ab}	59 ^{ab}	190 ^b	263 ^{ab}	134 ^{ab}	621 ^a	12 ^a	110 ^b	5,197 ^b
2.5 mg/kg	560 ^b	47 ^b	152 ^b	211 ^b	115 ^b	617 ^b	11 ^a	112 ^b	3,341 ^c
<i>p</i> -value	0.021	0.03	0.009	0.041	0.004	0	0.071	0.001	0.033
Shoot									
Control	17 ^a	58ª	145 ^a	28 ^a	32 ^a	379 ^a	11 ^a	39 ^a	1,341 ^a
1.0 mg/kg	13 ^{ab}	36 ^b	129 ^b	16 ^b	20 ^{ab}	314 ^{ab}	7 ^b	27 ^b	689ª
2.5 mg/kg	28 ^b	35 ^b	118 ^b	12 ^b	28 ^b	192 ^b	5 ^b	28 ^b	341 ^a
<i>p</i> -value	0.047	0.029	0.001	0.031	0.017	0.033	0.049	0.015	0.114

Different letters stand for statistical differences at $p \le 0.05$.

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158863/#!po=45.6522

Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview (2020)

Table 1: Cd concentration in wheat and soil globally.

Cd (mg/Kg) in Wheat; Average or Range	Cd (mg/Kg) in Soil; Average or Range	Soil Characteristics	Remarks	Area
0.14 (grain)	0.38	pH = 5.9 CEC (cmol/Kg) = 21.3 OM (%) = NR ** Clay (%) = 15.8	Yangmai16 *	The north of Zhejiang Province, China
0.12 (grain)	0.36	pH = 4.9 CEC (cmol/Kg) = 34.6 OM (%) = NR Clay (%) = 117.5	Yangmai16	The east of Zhejiang Province, China
3.17 (root) 1.11 (stem) 0.25 (grain)	2.06	pH = 7.5 CEC (cmol/Kg) = 7.6 OM (%) = NR Clay (%) = NR	Zhengmai7698	Henan Province, China
0.006 to 0.17 (grain)	0.09 to 1.0	pH = 6.6 CEC (cmol/Kg) = 18.2 OM (%) = 3.0 Clay (%) = NR	NR	Kunshan, China
0.247 (grain)	0.10	pH = 7.5 CEC (cmol/Kg) = NR OM (%) = NR Clay (%) = NR	-	Brandon, Manitoba, Canada
0.01 to 0.08 (grain)	0.21	pH = 5.3 CEC (cmol/Kg) = 31 OM = NR Clay (%) = NR	-	São Gotardo (MG), Brazil
0.95 (root) 0.60 (stem)	0.27	pH = 7.8 CEC (cmol/Kg) = NR OM (%) = 0.7 Clay (%) = NR	-	Khuzestan Province, Iran
0.01 to 0.02 (grain) 0.01 to 0.03 (grain)	3.2	pH = 7.6 CEC (cmol/Kg) = NR OM = 0.14 Clay (%) = 46	Rushan Falat	Qom, Iran
0.93 (grain) 0.16 (stem) 0.67 (root)	NR	pH = NR CEC (cmol/Kg) = NR OM = NR Clay (%) = NR		Lahore, Pakistan
0.003 to 0.03 (grain)	NR	pH = NR CEC (cmol/Kg) = NR OM = NR Clay (%) = NR	-	Sydney, Australia

^{*} Local names; ** not reported.

Table 2: Gene families and channels involved in the Cd uptake, transport, and metabolism in wheat.

Name	Remarks
AtIRT1	A plasma membrane transporter. Involved in entrance of Cd into root.
TcZNT1	Involved in entrance of Cd to root.
OsNRAMP1	Cd-influx transporter in the plasma membrane. Involved in entrance of Cd into
	root.
OsNRAMP5	Cd-influx transporter in the plasma membrane. Involved in entrance of Cd into
	root.
AtNRAMP6	An intracellular metal transporter. Involved in entrance of Cd into root.
TaLCT1	An influx transporter in wheat. Involved in entrance of Cd into root.
YSL	A kind of oligopeptide transporter. Involved in entrance of Cd into root over
	Cd-chelates across plant cell membranes.
P_{1B} -	A group of ubiquitous membranes. Transporting Cd from root to shoot.
ATPases	
CNGC gene	Ca ²⁺ channels in root protoplast plasma membrane. Indirectly involved in
family	entrance of Cd into root. Responsible for coding of HACCs, VICCs, and
	DACCs *.
DACCs	Ca ²⁺ channels. Involved in entrance of Cd into root.
HACCs	Ca ²⁺ channels. Involved in entrance of Cd into root.
VICCs	Ca ²⁺ channels. Involved in entrance of Cd into root.

^{*} Depolarization-activated calcium channels (DACCs), hyper polarization-activated calcium channels (HACCs) and voltage-insensitive cation channels (VICCs).

Table 3: Reported methods for decreasing the uptake of Cd by wheat plants.

Decreasing of Cd Accumulation in Root/Stem or Straw/Grains	Cd Concentration in Wheat after Treating (mg/Kg)	Method	Remarks
48.3% (in straw) 97.8% (in grain)	0.80 (in shoot) 0.01 (in grain)	Using rice husk biochar	Mixing silicon-rich biochar with soil
54% (in root) 50% (in shoot) 65% (in grains)	2.0 (in root) 1.1 (in shoot) 0.2 (in grain)	Using co-composted farm manure and biochar	Mixing organic amendments with soil
69% (in root) 67% (in shoot) 62.5% (in grains)	12 (in root) 2.7 (in shoot) 0.15 (in grain)	Using rice husk biochar	Mixing biochar with soil
55% (in root) 51% (in shoot)	1.2 (in root) 0.7 (in shoot)	Using biochar	Mixing biochar with soil under stress conditions
57% (in grains)	0.2 (in grain)	Using biochar	Mixing biochar (5%) with soil
97% (in straw)	>0.2 (in straw)	Using limestone + biochar	Mixing limestone + biochar with soil
77% (in grains)	1.1–0.2 (in grain)	Using zinc oxide nanoparticles	Foliar application
55% to 69% (in root)	1–0.6 (in root)	Using zinc	Using ZnSO ₄ in nutrient solution
7%–24% (in root) 13%–37% (in stem) 13%–50% (in grains)	4–3 (in root) 3.8–2.2 (in stem) 0.2–0.9 (in grain)	Using zinc	Foliar application
10%–31% (in root) 27%–52% (in shoot) 33%–70% (in grains)	2.7–2.0 (in root) 1.6–0.9 (in shoot) 0.5–0.2 (in grain)	Using zinc-lysine	Foliar application
19%–64% (in root) 11%–53% (in shoot) 20%–82% (in grains)	12–5 (in root) 6–2 (in shoot) 1.1–0.3 (in grains)	Using silicon nanoparticles	Foliar application
30% (in shoot)	1.2 (in shoot)	Using inorganic silicon fertilizer	Mixing the fertilizer with soil
24% (in grains)	0.35 (in grain)	Using sodium sulfate	Mixing with soil
* NR = Not reported.	NR	Using bacteria	Using <i>Ralstonia eutropha</i> Q2-8

^{*} NR = Not reported.

Source: https://www.mdpi.com/2223-7747/9/4/500/htm

Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review (2020)

Table 1: Cadmium contents in primary pollution sources regarding farmland soils^a)

Pollution source	mg kg ⁻¹ /mg L ⁻¹ /ng L ⁻¹ /μg L-1 product ^b)	mg kg ⁻¹ P							
Fertilizer	Fertilizer								
Complete fertilizer	23–29	418–527							
Single superphosphate	16–26	186–302							
Superphosphate	13–34	151–395							
Rock phosphate	7.2–47	54–303							
High-analysis fertilizer	< 0.6–5.6	15–118							
Double superphosphate	< 0.6–12	< 3.6–72							
Triple superphosphate	0.8–7.0	24–35							
Mono-ammonium phosphate	1.8–8.1	12–37							
Di-ammonium phosphate	4.3–6.6	22–28							
Sewage Suldge	5.0-3.32	-c)							
Organic manures	0.1–11	-							
Irrigation waste water	0.05-0.35	-							
Atmospheric deposition									
Dry deposition	0.03–8	•							
Wet deposition	0.01–52	-							

a)Data adapted from Kidd et al. (2007), Connan et al. (2013), Jiang et al. (2014), Nookabkaew et al. (2016), and Kumarpandit et al. (2017).

c)Not applicable.

Table 2: Summary of transporters related to Cd uptake and transport

Transporter	Metal	Plant species	Tissue expression/subcellular localization	References
AtCAX2	Cd/Mn/ Ca	Arabidopsis	Vacuolar membrane	Hirschi <i>et al.</i> , 2000; Shigaki and Hirschi, 2006
AtCAX4	Cd/Ca	Arabidopsis	Vacuolar membrane	Cheng <i>et al.</i> , 2002
AtHMA2	Cd/Zn	Arabidopsis	Plasma membrane	Hussain <i>et al.</i> , 2004; Verret <i>et al.</i> , 2004
AtHMA3	Cd/Zn/C o/Pb	Arabidopsis	Vacuolar membrane	Morel <i>et al.</i> , 2009
AtHMA4	Cd/Zn/P b/Co	Arabidopsis	Plasma membrane	Verret et al., 2004; Mills et al., 2005
AtATM3	Cd/Pb	Arabidopsis	Mitochondrial membrane	Kim et al., 2006
AtNRAMP6	Cd	Arabidopsis	Leaves and flowers	Cailliatte <i>et al.</i> , 2009
AtPDR8	Cd/Pb	Arabidopsis	Root hairs/epidermal cells	Kim et al., 2006
OsNRAMP5	Cd/Mn	Rice	Roots/plasma membrane	Sasaki et al., 2012
OsHMA2	Cd/Zn	Rice	Roots/plasma membrane	Satoh-Nagasawa <i>et al.</i> , 2011; Takahashi <i>et al.</i> , 2012; yamaji et al.,2013
OsHMA3	Cd	Rice	Root/Tonoplast	Ueno et al., 2010; Miyadate et al., 2011
OsIRT1	Cd/Fe	Rice	Roots	Nakanishi <i>et al.</i> , 2006
OsIRT2	Cd/Fe	Rice	Roots	Nakanishi <i>et al.</i> , 2006
OsLCT1	Cd	Rice	Leaf nodes/plasma membrane	Uraguchi et al., 2011
OsLCD	Cd	Rice	Vascular tissues in roots and phloem companion celles in leaves	Shimo et al., 2011
OsNRAMP1	Cd/Fe	Rice	Plasma membrane	Takahashi et al., 2011
OsNMP5	Cd/Mn/Fe	Rice	Plasma membrane	Ishimaru <i>et al.</i> , 2012
OsZIP1	Cd/Zn	Rice	Roots	Ramesh et al., 2003
ZNT1	Cd/Zn	Thlaspi caerulescens	Roots and shoot	Pence et al., 2000

Source: https://www.sciencedirect.com/science/article/abs/pii/S1002016020600029

b)Unit for Cd content is mg kg^{-1} except that in irrigation waste water, dry deposition, and wet deposition which is mg L^{-1} , ng m⁻³, $\mu g L^{-1}$, respectively.

Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review (2020)

Table 1: Some selected references of Cd contamination world-wide exceeding permissible limits.

Country (City)	Cd (mg kg ⁻¹)	Allowable limit (country)	Soil pH	References
Spain (Barakaldo)	4.5	$1 \text{ (mg kg}^{-1})$	8.74	Galdames et al. 2017
Spain (Azkoitia)	0.40	1 (mg kg ⁻¹)	7.5	Galdames et al. 2017
China (Tianjin)	2.1	$\leq 0.60 (\text{mg kg}^{-1})$	7.4	Wang et al. 2017
China (Yixing)	5	$\leq 0.30 \; (mg \; kg^{-1})$	5.36	Bian et al. 2014
China (Xinxiang)	0.88	$\leq 0.60 (\text{mg kg}^{-1})$	8.3	Li et al. 2016
China (Xiangtan)	1.42	$\leq 0.30 \; (mg \; kg^{-1})$	5.01	Shi et al. 2019
China (Youxi)	15.44	$\leq 0.30 \; (mg \; kg^{-1})$	5.70	Chen et al. 2016
Belgium (Sclaigneaux)	24	$\leq 10 \text{ (mg kg}^{-1}\text{)}$	6.57	Houben et al. 2013
Austria (Arnoldstein)	12.5	$\leq 10 \text{ (mg kg}^{-1}\text{)}$	5.97	Karer et al. 2015
Czech Republic (Trhové Dušníky)	42.7	$\leq 10 \text{ (mg kg}^{-1}\text{)}$	6.6	Břendová et al. 2015
Nigeria	0.00 to 1.02	$3 (\mu g g^{-1})$	5.14-6.73	Diagboya et al. 2015
New Zealand	0.79	$3 \text{ (mg kg}^{-1})$	6.3	Stafford et al. 2018
New Zealand	0.61	$3 \text{ (mg kg}^{-1})$	5.6	Stafford et al. 2018
Pakistan (Multan)	7.35	$0.6 (\text{mg kg}^{-1})$	7.23	Rehman et al. 2017
Pakistan (Multan)	3.02	$0.6 (\text{mg kg}^{-1})$	7.25	Qayyum et al. 2017
Korea (Seosan)	17	b4 (mg kg ⁻¹)	6.3	Ok et al. 2011
Malaysia (Kuala Lumpur)	5.20	$0.80 (\text{mg kg}^{-1})$	7.83	Ashrafi et al. 2015
Egypt (Gharbia)	122	$\leq 10 \text{ (mg kg}^{-1}\text{)}$	7.89	Mahmoud and Nasser, 2016
Iran (Zanjan)	41.2	$0.80 (\text{mg kg}^{-1})$	7.19	Abbaspour and Ahmad, 2011
United Kingdom (Staffordshire)	119	1.8 (mg kg ⁻¹)	6.2	Beesley and Marmiroli, 2011

Table 2: Biochar as an adsorbent of cadmium.

Bioch ar type	Pyrolys is temper ature and time	Chemical composition of biochar	Instrumen ts used	Adsorbed compound and extraction method	Efficiency	Mechanisms involved	Reference s
Rice straw bioch ar	500 °C (2 h)	C 54% and N 1.6%, PO4-3 8.02 mg g ⁻¹ , CO3 ⁻¹ 10.3 mg g ⁻¹ , Ca ⁻¹ 9.69 mg g ⁻¹ , Mg ⁻¹ 2.32 mg g ⁻¹	Atomic absorption spectrophot ometer	Cd, Pb (BCR fraction, TCLP and CaCl ₂)	Acid-soluble Cd reduced by (27.5–34.8%), TCLP extract (14.7– 16.9%), CaCl ₂ (28– 32%)	Surface functional groups (hydroxyl, carboxylic, phenolic), adsorption	Bashir et al. 2018a
Sugar cane bagas se feedst ock bioch ar	500 °C (2 h)	C% 640, Total N 11.40 g kg ⁻¹ , Total P 16.21 g kg ⁻¹ , Total P 23.92 g kg ⁻¹ ,	AAS, spectrophot ometer	Cd, Cr (DTPA-extracted)	Cd concentration decreased in mash beans tissues by 28.74 and 32% in Cd- and Cr-Cd- contaminated soil	Insoluble mineral formation through complexation and precipitation	Bashir et al. 2018b
Oil palm fibers bioch ar	700 °C (4 h)	C% 86.7, O% 3.2, H% 1.8, K% 1.3,	ICP-AES, hydrogen generation- atomic fluorescenc e spectromete r, graphite furnace atomic absorption	Cd, As (Metals fractionation), DCB solution	Cd and As in rice grains were decreased by 93% and 61%	Biochar's liming effect leads to the raise in soil pH, which can greatly reduce the mobility and bioavailabilit y of Cd	Qiao et al. 2018

			cnectromato				
Whea t straw bioch ar	485 °C	Total N ₁ 5.9 g Kg Total P 14.4 g kg	spectromete r. Atomic absorption spectrometr y using a graphite furnace (GFAAS)	Cd, Pb (CaCl ₂),	Biochar addition reduced Cd by 30 and 5% and Pb by 50 and 19%	An increase in soil pH contributed to the decrease in Cd and Pb mobility	Sui et al. 2018
Chick en manu re bioch ar	550 °C	pH 7.5, Cd 1.3 ₁ mg kg	ICP-OES, ICP-MS	AS, Cd (1 M NH4NO3 extraction)	higher amounts of Cd are extracted by NH4NO3	Processes involved (the decline in pH, Cd desorption by NH4+ and the formation of soluble metal- complexes)	Rocco et al. 2018
Rice straw bioch ar	400 °C (2 h)	Organic carbon 62.5%, Total N 1.38%, Total P 0.65%, Total K 1.18%	X-ray diffraction, FTIR, scanning electron microscopy , (atomic absorption)	Cd, Pb	76.8% and 74.2%, reduction in Cd and Pb accumulation by canola shoots	Presence of functional groups (CNH, C-C, Al-OH-Fe, i-O-Si, O-P-O, C-OH and CNC)	Mahmoud et al. 2018
Malay sian Palm Oil Board bioch ar	250 °C	pH 9.33, Total C (%) 61.87, N (%) 1.096	ICP-OES, Atomic adsorption spectrometr y, ICP-OES	Cd, Pb (SRW- extractable)	Cd and Pb significantly decreased with the increasing incubation time	Oxygen- containing functional groups, which are expected to be more effective in retaining heavy metals	Fahmi et al. 2018
straw bioch ar	450 °C and 550 °C	pH 10.0, C 42.3%, N 1.5%, P 0.3%, K 2.54%	Atomic absorption spectrophot ometer	Cd (AB-DTPA extractable)	Cd was lowered by 46%, 45%, and 55% in roots, shoots and grains and BC application reduced bioavailable Cd in soil	The decreased Cd contents may be attributed to increased concentration of organic matter. While, abridged seed Cd may be due to plant high which can hold Cd in shoots and roots.	Abbas et al. 2018
Scot pine and silver birch bioch ar	450 °C (2 h and 45 min) 700 °C (2 h and 45 min)	pH 8.56, TC (%) 96.3 pH 8.69, TC (%) 95	Atomic absorption spectrophot ometer, flame atomic absorption spectrophot ometer (FAAS), SEM	Cd, Cu, Pb, Zn	Increase in metals concentration resulted occupying available adsorption sites	Higher cation exchange capacity and increase of specific surface area	Komkiene and Baltrenait e, 2016
Whea t straw biocha r	450 °C	Organic Matter (g kg ⁻¹) 467.2, CEC (cmol kg ⁻¹) 21.70, Total N (g kg ⁻¹)	SEM, X- ray spectroscop y, FTIR spectra	Cd, Pb (BCR)	Exchangeable fractions of Cd and Pb were significantly decreased	Decreased content may be attributed to the dilution effect of the amendment	Cui et al. 2016

Bamb oo bioch ar	750 °C (3 h)	5.90 Nitrogen (g kg) 4.5, cation exchange capacity (cmol kg) 15	XRD and FTIR spectroscop y,	Cd, Cu, Pb and Zn (CaCl ₂ and DTPA extraction), Sequential extraction	5% rice straw biochar was more effective in reducing CaCl ₂ and DTPA extractable metals	Possible mechanism (the formation of precipitates, increases in the specific adsorption of metals, increases in electrostatic interactions).	Lu et al. 2017
Peanu t shell bioch ar	350– 500 °C	pH(H ₂ O) 9.95, Total C (g kg) 133.7, Total Cd (mg kg) 0.123	FAAS	Cd, Pb (sequential extraction)	Cd and Pb concentrations in rice roots were lower by 50.8 and 22.6% using PBC	Biochar enhanced soil pH, which led to the precipitation of Cd and Pb as CdCO ₃ andPb ₅ (PO ₄) ₃ OH	Xu et al. 2018
Rice straw bioch ar	500 °C (3 h)	pH 9.5, total organic C 29.3 g kg ⁻¹ ,N 1.83%, P 1.43%, K 18.9%	ICP-MS	Cd (EDTA extraction, sequential extraction)	Bioavailable Cd decreased from 0.45 and 0.85 mg kg to 0.05 and 0.39 mg kg	Biochar transforms soluble Cd to stable form, especially formation of metal (hydr)oxide, carbonate	Run-Hua et al. 2017

Source: https://www.sciencedirect.com/science/article/abs/pii/S0048969719361170

Remediation of Cadmium-Polluted Soil Using Plant Growth-Promoting Rhizobacteria and Natural Zeolite (2020)

Table 1: Mass of barley plants and Cd content in the plants in the earing phase (experiment 1)

Variant	Plant weight (dry matter), g/pot	Cd content in plants, mg/kg dry mass
	Vegetative mass	
Control - NPK	2.16 ± 0.05a	Traces
Cd + NPK	2.21 ± 0.03a	7b
Cd + P. fluorescens 21 + NPK	2.14 ± 0.04a	За
	Roots	
Control - NPK	0.52 ± 0.06a	Traces
Cd + NPK	0.54 ± 0.05a	81
Cd + P. fluorescens 21+ NPK	0.62 ± 0.07b	71

Mean data on four replicates of the experiment \pm confidence interval are reported. Errors in determining the Cd content in plants did not exceed 15%. The values indicated by different letters differed at a significance level of 5%.

Table 2: Mass of barley plants and Cd content in the plants in the full ripeness phase (experiment 2)

Variant	Plant weight (dry matter), g/pot				Cd content in plants, mg/kg dry mass		
	grain	straw	roots	total	grain	straw	roots
Control – NPK	33.6	33.4	3.7	70.7	Not detected		
Cd + NPK	25.9	29.9	3.7	59.5	2 18 143		143
Cd + P. fluorescens 21 + NPK	32.4	37.3	4.4	74.0	2	17	88
Cd + P. putida 23 + NPK	33.7	36.5	5.4	75.6	2	19	90
Cd + zeolite + NPK	32.9	33.7	4.8	71.5	2	16	120
Cd + P. fluorescens 21 + zeolite + NPK	35.3	37.4	5.6	78.3	2 15 100		100
LSD ₀₅	3.0	3.7	1.5	10.0	1.0	3.0	11.1

Table 3: Removal of Cd by barley plants in the phase of full ripeness (experiment 2)

Variant		C	Cd removal by plants				
	grain	straw	roots	total			
	μg/pot			mg/pot	% of added Cd		
Control – NPK	Not det.	Not det.	Tr.	Tr.	Tr.		
Cd + NPK	52	538	529	1.1	2.2		
Cd + P. fluorescens 21 + NPK	65	634	387	1.1	2.2		
Cd + P. putida 23 + NPK	68	694	486	1.2	2.5		
Cd + zeolite + NPK	66	539	576	1.2	2.4		
Cd + P. fluorescens 21 + zeolite + NPK	71	561	560	1.2	2.4		
LSD ₀₅	8	75	69	0.2			

Table 4: Reaction of the soil medium after barley growing

Experiment no.	Phase of plant development	Variant	pH_{KCl}
1	Earing	Control – NPK	$5.13 \pm 0.09a$
		Cd + NPK	5.23 ± 0.07 b
		Cd + P. fluorescens 21 + NPK	$5.23 \pm 0.08b$
2	Full ripeness	Control – NPK	$5.31 \pm 0.07a$
		Cd + NPK	$5.47 \pm 0.08b$
		Cd + P. fluorescens 21 + NPK	5.42 ± 0.09 b
		Cd + P. pitida 23 + NPK	$5.31 \pm 0.06a$
		Cd + zeolite + NPK	$5.27 \pm 0.05a$
		Cd + P. fluorescens 21 + zeolite + NPK	$5.32 \pm 0.05a$

Table 5: The contents of biophilous elements in barley plants in the phase of full ripeness (experiment 2)

Variant	N	P	K	Ca	Mg	Fe	Zn	M	Cu
	%				ma/ka	nlant	matta	n	
	Grain				mg/kg	ріані	шаш	er e	
Control – NPK	1.59	0.41	0.56	0.05	0.02	66	56	22	8
Cd + NPK	1.68	0.41	0.58	0.03	0.02	85	52	18	8
						95	_		8
Cd + P. fluorescens 21 + NPK	1.42	0.47	0.59	0.03	0.02	93	51	18	0
Cd + P. putida 23 + NPK	1.51	0.47	0.57	0.04	0.02	87	52	21	9
Cd + zeolite + NPK	1.42	0.45	0.58	0.03	0.02	10 0	53	20	8
Cd + <i>P. fluorescens</i> 21 + zeolite + NPK	1.50	0.50	0.58	0.04	0.02	10 1	52	18	9
	Straw								
Control – NPK	0.37	0.04	2.5	0.07	0.01	10 0	20	98	8
Cd + NPK	0.41	0.06	2.1	0.09	0.01	10 0	26	78	8
Cd + P. fluorescens 21 + NPK	0.37	0.07	2.1	0.08	0.01	11 0	32	87	8
Cd + P. putida 23 + NPK	0.42	0.07	2.4	0.06	0.01	11 0	51	10 8	9
Cd + zeolite + NPK	0.43	0.05	1.9	0.07	0.01	12 3	36	94	8
Cd + P. fluorescens 21 + zeolite + NPK	0.35	0.06	2.0	0.06	0.01	12 5	38	89	8
	Roots								
Control – NPK	1.30	0.17	0.19	0.32	0.05	19 00	20	15 1	23
Cd + NPK	0.97	0.18	0.40	0.32	0.05	17 00	24 0	11 0	33
Cd + P. fluorescens 21 + NPK	1.03	0.15	0.25	0.33	0.07	16 00	18 5	12 6	27
Cd + P. putida 23 + NPK	1.15	0.16	0.24	0.34	0.06	18 00	21	12 4	28
Cd + zeolite + NPK	1.17	0.16	0.36	0.33	0.06	16 00	23	10	27
Cd + P. fluorescens 21 + zeolite + NPK	1.00	0.15	0.36	0.33	0.06	18 00	25 7	12 7	29

The mean of four replicated. Errors in the determination of macro- and microelements for the variants did not exceed 5 and 15%, respectively.

Table 6: Removal of biophilous elements by barley plants in the full ripeness phase (experiment 2)

	N	P	K	Ca	Mg	Fe	Zn	Mn	Cu
Variant	Grair	Grain							
	mg/p	ot						μg/po	ot
Control – NPK	534	138	188	17	6.7	2.2	1.9	739	269
Cd + NPK	435	114	195	10	5.2	2.2	1.4	518	207
Cd + P. fluorescens 21 + NPK	460	152	191	10	6.5	3.1	1.7	583	201
Cd + P. putida 23 + NPK	509	159	192	14	6.7	3.0	1.8	708	291
Cd + zeolite + NPK	467	148	191	10	6.5	3.2	1.7	592	263
Cd + P. fluorescens 21 + zeolite + NPK	530	177	205	14	7.0	3.6	1.8	638	318
	Entir	e plant							
	mg/p	ot							μg/pot
Control – NPK	707	157	1030	52	11.9	12.6	3.2	4.6	622
Cd + NPK	594	139	838	49	10.0	11.4	3.1	3.3	567
Cd + P. fluorescens 21 + NPK	643	185	985	55	13.3	14.4	3.7	4.3	708
Cd + P. putida 23 + NPK	724	194	1080	54	13.6	18.6	4.8	5.3	777
Cd + zeolite + NPK	668	173	848	50	12.8	15.6	4.0	4.3	663
Cd + P. fluorescens 21 + zeolite + NPK	717	208	953	54	14.0	18.2	4.6	4.7	778

The values exceeding those for the Cd-contaminated soil without application of bacteria and zeolite at the significance level of 5% are shown in bold.

Source: https://link.springer.com/article/10.1134/S1064229320060113

Potential use of king grass (Pennisetum purpureum Schumach. × Pennisetum glaucum (L.) R.Br.) for phytoextraction of cadmium from fields (2020)

Table 1: Effects of intercropping with accumulator plants and application of their straw on the biomass of *B. chinensis* in Cd-contaminated soil.

Treatments	Roots (g/plant DW)	Shoots (g/plant DW)	Root/shoot ratio
Experiment 1			
Monoculture	$0.36 \pm 0.01a$	1.70 ± 0.07 a	$0.21 \pm 0.01b$
Intercropping with S. media	0.25 ± 0.01 c	1.23 ± 0.01 d	0.20 ± 0.01 b
Intercropping with C. hirsute	0.24 ± 0.01 c	$1.06 \pm 0.03e$	$0.22 \pm 0.02a$
Intercropping with C. glomeratum	$0.29 \pm 0.01b$	1.43 ± 0.05 b	$0.20 \pm 0.01b$
Intercropping with G. aparine	$0.28 \pm 0.01b$	1.34 ± 0.03 c	$0.21 \pm 0.01b$
Experiment 2			
Control	$0.33 \pm 0.02a$	$1.81 \pm 0.01a$	$0.18 \pm 0.01b$
Application of S. media	0.28 ± 0.01 d	$0.92 \pm 0.01e$	$0.30 \pm 0.02a$
Application of C. hirsute	$0.31 \pm 0.01b$	$1.68 \pm 0.01b$	$0.18 \pm 0.01b$
Application of C. glomeratum	0.28 ± 0.01 c	1.00 ± 0.01 d	$0.28 \pm 0.02a$
Application of G. aparine	$0.30 \pm 0.01b$	1.52 ± 0.01 c	$0.20 \pm 0.01b$

Table 2: Effects of intercropping with accumulator plants and application of their straw on the water content of *B. chinensis* in Cd-contaminated soil

Treatments	Roots (%)	Shoots (%)
Experiment 1		
Monoculture	$83.16 \pm 0.05a$	$90.21 \pm 0.12b$
Intercropping with S. media	76.76 ± 0.09 d	$88.00 \pm 0.14c$
Intercropping with C. hirsute	$69.99 \pm 0.07e$	$88.12 \pm 0.16c$
Intercropping with C. glomeratum	$80.88 \pm 0.02b$	$90.48 \pm 0.13a$
Intercropping with G. aparine	$78.88 \pm 0.03c$	89.99 ± 0.17 b
Experiment 2		
Control	$79.56 \pm 0.16a$	$90.38 \pm 0.07a$
Application of S. media	$78.82 \pm 0.03b$	$87.53 \pm 0.07e$
Application of C. hirsute	$78.28 \pm 0.11c$	$88.34 \pm 0.04c$
Application of C. glomeratum	$78.93 \pm 0.20b$	$87.98 \pm 0.16d$
Application of G. aparine	$78.88 \pm 0.17b$	$89.21 \pm 0.12b$

Table 3: Effects of intercropping with accumulator plant and application of their straw on the photosynthetic pigment of *B. chinensis* in Cd-contaminated soil

Treatment	Chlorophyll a (mg/g)	Chlorophyll b (mg/g)	Total chlorophyll (mg/g)	Chlorophyll a/b	Carotenoid (mg/g)					
Experiment 1	Experiment 1									
Monoculture	$0.648 \pm 0.002a$	0.131 ± 0.004 a	0.779 ± 0.006 a	$4.960 \pm 0.036d$	$0.247 \pm 0.002a$					
Intercropping with S. media	$0.499 \pm 0.009d$	0.083 ± 0.003 c	$0.582 \pm 0.011d$	6.014 ± 0.011a	0.184 ± 0.003 c					
Intercropping with <i>C.</i> hirsute	$0.479 \pm 0.006d$	0.091 ± 0.007 c	0.570 ± 0.001 d	$5.312 \pm 0.040b$	0.179 ± 0.005 c					
Intercropping with C. glomeratum	0.578 ± 0.014 b	0.111 ± 0.004 b	0.689 ± 0.017 b	$5.232 \pm 0.043c$	0.207 ± 0.005 b					
Intercropping with G. aparine	0.544 ± 0.003 c	0.117 ± 0.003 b	$0.661 \pm 0.006c$	$4.662 \pm 0.036e$	$0.201 \pm 0.002b$					
Experiment 2										
Control	$0.675 \pm 0.016a$	$0.132 \pm 0.008a$	$0.807 \pm 0.008a$	$5.111 \pm 0.011c$	$0.246 \pm 0.007a$					
Application of S. media	$0.426 \pm 0.019d$	$0.068 \pm 0.006c$	$0.494 \pm 0.012d$	$6.273 \pm 0.022a$	0.163 ± 0.009 c					
Application of C. hirsute	$0.631 \pm 0.001b$	$0.125 \pm 0.007a$	$0.756 \pm 0.009b$	$5.044 \pm 0.026d$	$0.232 \pm 0.007a$					
Application of C. glomeratum	0.544 ± 0.004 c	0.102 ± 0.005 b	0.646 ± 0.009 c	$5.344 \pm 0.040b$	$0.201 \pm 0.008b$					
Application of G. aparine	$0.547 \pm 0.010c$	$0.109 \pm 0.002b$	$0.656 \pm 0.007c$	$5.030 \pm 0.023d$	0.201 ± 0.003 b					

Table 4: Effects of intercropping with accumulator plant and application of their straw on Cd content of *B. chinensis* in Cd-contaminated soil.

Treatment	Roots (mg/kg)	Shoots (mg/kg)	Translocation factor (TF)	Root bioconcentration factor (root BCF)	Shoot bioconcentration factor (shoot BCF)
Experiment 1					
Monoculture	$3.54 \pm 0.22d$	$1.75 \pm 0.02c$	0.49 ± 0.03 ab	$0.51 \pm 0.03d$	$0.25 \pm 0.00c$
Intercropping with S. media	$3.86 \pm 0.08c$	$1.77 \pm 0.04c$	0.46 ± 0.00 bc	$0.55 \pm 0.01c$	$0.25 \pm 0.01c$
Intercropping with C. hirsute	$4.43 \pm 0.20b$	$2.24 \pm 0.05a$	$0.51 \pm 0.01a$	$0.63 \pm 0.03b$	$0.32 \pm 0.01a$
Intercropping with C. glomeratum	$4.05 \pm 0.07c$	$2.08 \pm 0.13b$	$0.51 \pm 0.02a$	0.58 ± 0.01 c	$0.30 \pm 0.02b$
Intercropping with G. aparine	$4.81 \pm 0.12a$	$2.29 \pm 0.03a$	$0.48 \pm 0.01 \text{ b}$	$0.69 \pm 0.02a$	$0.33 \pm 0.00a$
Experiment 2					
Control	$3.74 \pm 0.18b$	$1.90 \pm 0.12b$	$0.51 \pm 0.01b$	$0.53 \pm 0.03b$	$0.27 \pm 0.02b$
Application of S. media	$3.88 \pm 0.09b$	$1.93 \pm 0.07b$	$0.50 \pm 0.02b$	$0.55 \pm 0.01b$	$0.28 \pm 0.01b$
Application of <i>C.</i> hirsute	$4.30 \pm 0.08a$	2.46 ± 0.07 a	$0.57 \pm 0.02a$	0.61 ± 0.01 a	$0.35 \pm 0.01a$
Application of C. glomeratum	2.64 ± 0.03 c	1.10 ± 0.05 d	$0.42 \pm 0.02c$	$0.38 \pm 0.00c$	$0.16 \pm 0.01c$
Application of <i>G</i> . aparine	$2.83 \pm 0.14c$	$1.25 \pm 0.04c$	$0.44 \pm 0.01c$	$0.40 \pm 0.02c$	$0.18 \pm 0.01c$

Source: https://link.springer.com/article/10.1007/s11356-020-09148-7

Cadmium-induced changes in the growth and oxidative metabolism of pea plants (2019)

Table: Effect of Cd treatment on photosynthesis, water use efficiency and transpiration of pea plants

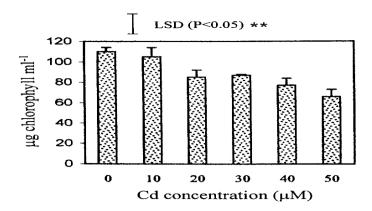
Cd (mM)	Photosynthesis rate	Water use	Transpiration rate
	$(mM H_2O m^{-2} s^{-1})$	efficiency (nmol CO ₂ mM ⁻¹ H ₂ O)	$(mM H_2Om^{-2} s^{-1})$
0	12.20 a	4872 a	2.52 a
10	8.48 b	3970 b	2.14 b
20	6.46 c	3625 c	1.79 с
30	5.03 d	3052 d	1.65 d
40	4.14 e	2492 e	1.66 d
50	1.84 f	1318 f	1.42 e

Values are means of 12 replicates. Values followed by the same letter are not significantly different (P-0.05) as determined by Duncan's multiple range test.

The growth inhibition of pea plants was accompanied by a significant decrease in the photosynthesis rate, which was about six times reduced at the highest Cd concentration in comparison with control plants. The transpiration rate and water use efficiency were also affected by Cd treatment, undergoing a significant and progressive decrease with increasing Cd concentrations in the nutrient solution. The transpiration rate and water use efficiency were also affected by Cd treatment, undergoing a significant and progressive decrease with increasing Cd concentrations in the nutrient solution.

Source: http://sci-hub.tw/10.1093/jexbot/52.364.2115

Cadmium-induced changes in the growth and oxidative metabolism of pea plants (2019)

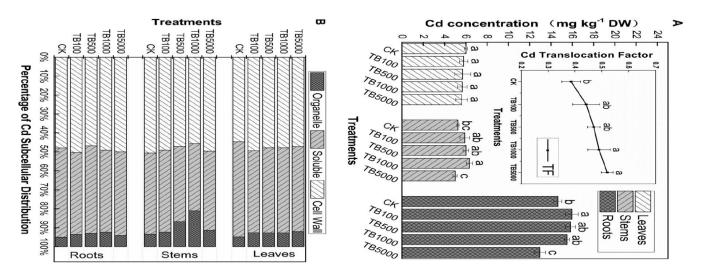

Table: Effect of Cd treatment on growth of pea plants

Cd (mM)	Leaves (g DW)	Roots (g DW)	Leaf area (cm²)
0	9.95 a	5.98 ab	4340 a
10	8.69 a	6.14 ab	3861 a
20	6.98 b	6.76 a	3013 b
30	6.23 bc	6.70 a	2633 b
40	5.36 c	5.80 ab	2410 b
50	3.89 d	4.39 с	1595 с

Increasing concentrations of Cd in the nutrient solution produced a significant growth inhibition of pea plants, measured as dry weight (Table), the greatest adverse effect being on leaves while root growth was only significantly affected by 50 mM CdCl₂ (Table). The decrease in dry weight of leaves was parallel to a reduction in the leaf area (Table) but no visible symptoms of toxicity, except growth reduction, were observed.

Source: https://www.ncbi.nlm.nih.gov/pubmed/11604450

Effect of Cd treatment on the chlorophyll content of pea leaf extracts.(2019)


Pea plants were grown with different Cd concentrations (0–50 mM) as described in Materials and methods. Each rectangle represents the mean "SEM of three replicates. Vertical bars indicate LSD (P-0.05) as determined by the Duncan's multiple-range test.

The chlorophyll content was also affected by Cd, showing a reduction which was proportional to the Cd concentration in the nutrient solution.

Source: https://www.ncbi.nlm.nih.gov/pubmed/11604450

Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity(2019)

Cd behaviour in the plants changed by (tea waste derived biochar) TB: Metal behavior in the plants influenced by biochar

The influence of TB on the bio-accumulation and translocation of Cd in ramie seedlings was shown in Fig A. The application of TB increased Cd concentration in ramie roots compared with control, with the exception of the TB5000 treatments, in which the concentration of Cd de- creased significantly. Similar to what was observed in roots, TB at 100, 500 and 1000 mg kg-1 increased Cd concentration in ramie stems by 12-20%, whereas the 5000 mg kg-1 TB reduced Cd concentration by 5% relative to the control. However, no statistical difference in Cd concentration was observed in ramie leaves whether the seedlings were treated with TB or not. The TF value of Cd in ramie seedlings increased with increasing the concentration of TB (Fig.A) whereas, the sub cellular distribution of Cd in ramie seedlings was influenced by the application of TB (Fig.B).

Source: http://sci-hub.tw/https://doi.org/10.1016/j.scitotenv.2019.02.215

Cadmium tolerance and phytoremediation potential of acacia (*Acacia nilotica L.*) under salinity stress (2018)

Table 1: Effects of various levels of Cd and salinity on growth parameters (plant height, stem diameter, number of branches per plant, root length, shoot dry weight, root dry weight) of A. nilotica in a pot experiment.

Cd and salinity levels	Plant height (cm)	Stem diameter (cm)	Branches (plant ⁻¹)	Root length (cm)	Shoot dry weight (g plant ⁻¹)	Root dry weight (g plant ⁻¹)
Control	81 § 4.04 a	1.2 § 0.04 a	16 § 0.57 a	80 § 3.0 a	37 § 2.0 a	15.7 § 0.66 a
Cd-0-NaCl- 0.5	74 § 2.30 b	1.12 § 0.02 b	15 § 0.57 ab	72 § 1.15 bc	32 § 1.0 bc	13.3 § 0.57 bc
Cd-0-NaCl- 1.0	59 § 3.71 d	1 § 0.04 c	13 § 0.67 cd	65 § 1.66 d	23 § 1.45 e	11 § 0.88 e
Cd-5-NaCl-0	76.8 § 1.92 ab	1.17 § 0.05 ab	15 § 0.57 ab	77.2 § 3.28 ab	36 § 0.57 a	15 § 0.66 a
Cd-5-NaCl- 0.5	72.3 § 1.76 bc	1.02 § 0.04 c	13.3 § 0.57 c	67.3 § 2.84 cd	30 § 0.57 cd	12.5 § 0.57 cd
Cd-5-NaCl- 1.0	57 § 1.85 d	0.9 § 0.02 d	12.5 § 0.3 cd	56.2 § 1.15 e	20 § 0.88 f	9.6 § 0.66 f
Cd-10-NaCl-0	74.3 § 1.45 b	1.11 § 0.03 b	13.7 § 0.7 b	74.2 § 2.72 b	34 § 1.52 ab	14 § 0.33 ab
Cd-10-NaCl- 0.5	65 § 3.48 cd	0.89 § 0.04 d	12.7 § 0.66 cd	62.2 § 2.88 de	28 § 0.57 d	11 § 0.33 e
Cd-10-NaCl- 1.0	50 § 3.2 e	0.8 § 0.03 e	12 § 0.2 d	48.9 § 3.92 f	16 § 1.45 g	8 § 0.33 g
Cd-15-NaCl-0	69 § 3.60 c	1.05 § 0.05 bc	13.2 § 0.66 bc	70.5 § 1.85 c	31.3 § 2.02 bc	13 § 57 bc
Cd-15-NaCl- 0.5	60 § 3.06 d	0.85 § 0.05 de	12 § 0.57 d	57.9 § 2.40 e	23.1 § 1.52 e	9.4 § 0.57 f
Cd-15-NaCl- 1.0	44 § 2.8 f	0.7 § 0.03 f	10.5 § 0.57 e	41.2 § 2.90 g	12.5 § 1.45 h	6.5 § 0.33 h

For each parameter, the values (mean § standard error of three replicates) sharing the same letter are not significantly different (LSD test, P D 0.05).

Table 2: Effects of various levels of Cd and salinity on root and shoot ionic (Na, K, Cl) concentrations (mmol g-1 dry weight) of A. nilotica in a pot experiment

Cd and salinity levels	Root Na	Shoot Na	Root K	Shoot K	Root Cl	Shoot Cl
summey levels						
Control	0.12 § 0.02 c	0.14 § 0.01 c	0.90 § 0.07 a	1.25 § 0.02 a	0.16 § 0.04 ij	0.18 § 0.01 hi
Cd-0-NaCl- 0.5	0.50 § 0.01 b	0.66 § 0.02 b	0.71 § 0.05 c	0.80 § 0.01 e	0.85 § 0.03 gh	0.90 § 0.03 fg
Cd-0-NaCl- 1.0	0.90 § 0.03 a	1.10 § 0.03 a	0.35 § 0.03 ef	0.50 § 0.02 h	1.45 § 0.04 d	1.57 § 0.03 d
Cd-5-NaCl-0	0.12 § 0.02 c	0.13 § 0.05 c	0.86 § 0.02 ab	1.15 § 0.02 b	0.17 § 0.05 i	0.19 § 0.04 hi
Cd-5-NaCl- 0.5	0.49 § 0.02 b	0.66 § 0.05 b	0.65 § 0.02 cd	0.70 § 0.04 f	0.90 § 0.02 g	0.94 § 0.03 g
Cd-5-NaCl- 1.0	0.91 § 0.05 a	1.10 § 0.04 a	0.30 § 0.01 ef	0.39 § 0.05 i	1.55 § 0.02 c	1.64 § 0.02 c
Cd-10-NaCl-0	0.11 § 0.04 c	0.14 § 0.03 c	0.80 § 0.02 bc	1.05 § 0.06 c	0.18 § 0.01 i	0.20 § 0.02 h
Cd-10-NaCl- 0.5	0.48 § 0.04 b	0.65 § 0.02 b	0.59 § 0.04 de	0.59 § 0.07 g	0.98 § 0.01 f	1.00 § 0.01 f
Cd-10-NaCl- 1.0	0.91 § 0.05 a	1.12 § 0.01 a	0.27 § 0.06 fg	0.35 § 0.03 ij	1.65 § 0.03 b	1.78 § 0.05 b
Cd-15-NaCl-0	0.12 § 0.03 c	0.13 § 0.04 c	0.67 § 0.05 cd	0.90 § 0.01 d	0.20 § 0.04 i	0.21 § 0.06 h
Cd-15-NaCl- 0.5	0.49 § 0.04 b	0.66 § 0.05 b	0.35 § 0.05 e	0.42 § 0.02 i	1.07 § 0.05 e	1.12 § 0.07 e
Cd-15-NaCl- 1.0	0.92 § 0.02 a	1.14 § 0.03 a	0.20 § 0.03 h	0.28 § 0.05 jk	1.78 § 0.05 a	1.89 § 0.05 a

For each parameter, the values (mean § standard error of three replicates) sharing the same letter are not significantly different (LSD test, P D 0.05).

Table 3: Effects of various levels of Cd and salinity treatments on root and shoot Cd concentrations (mg kg⁻¹), root and shoot Cd uptake (mg plant⁻¹) and tolerance index (%) of A. nilotica in a pot experiment.

Cd and salinity levels	Root Cd concentration	Shoot Cd concentration	Root Cd Uptake	Shoot Cd Uptake	Tolerance index
Control	0.19 § 0.15 h	0.24 § 0.15 h	2.97 § 1.4 h	8.88 § 3.5 i	
Cd-0-NaCl-0.5	0.2 § 0.21 h	0.23 § 0.12 h	2.7 § 1.5 h	7.36 § 3.0 i	90 § 5.0 ab
Cd-0-NaCl-1.0	0.21 § 0.15 h	0.24 § 0.15 h	2.31 § 1.0 h	5.52 § 3.6 i	81.3 § 3.0 c
Cd-5-NaCl-0	2.5 § 0.39 g	3.3 § 0.45 g	36.75 § 1.0 g	115.5 § 4.5 h	96.5 § 4.0 a
Cd-5-NaCl-0.5	3.8 § 0.3 f	4.7 § 0.24 f	47.5 § 1.0 e	141 § 2.5 g	84.1 § 3.0 bc
Cd-5-NaCl-1.0	4.5 § 0.3 e	5.4 § 0.3 ef	43.2 § 2.0 f	108 § 7.8 h	70.3 § 2.0 de
Cd-10-NaCl-0	4.1 § 0.3 ef	6.1 § 0.54 e	56.99 § 1.0 d	200.69 § 2.5 e	92.8 § 2.0 ab
Cd-10-NaCl-0.5	5.8 § 0.2 d	8.9 § 0.6 d	63.8 § 0.8 c	249.2 § 8.6 c	77.8 § 4.0 cd
Cd-10-NaCl-1.0	7.0 § 0.3 c	10.9 § 0.3 c	56 § 1.8 c	174.4 § 4.5 f	61.1 § 3.0 e
Cd-15-NaCl-0	5.8 § 0.45 d	9.3 § 0.66 d	75.4 § 2.5 b	291.09 § 4.5 b	88.1 § 3.0 b
Cd-15-NaCl-0.5	8.9 § 0.39 b	15 § 0.69 b	83.66 § 1.8 a	346.5 § 8.9 a	72.4 § 4.0 d
Cd-15-NaCl-1.0	11.2 § 0.36 a	18.5 § 0.39 a	72.8 § 2.0 b	231.25 § 5.0 d	51.5 § 2.0 f

For each parameter, the values (mean \S standard error of three replicates) sharing the same letter are not significantly different (LSD test, P D 0.05)

Source: https://www.tandfonline.com/doi/pdf/10.1080/15226514.2017.1413339?needAccess=true

Cadmium Uptake and Distribution in Fragrant Rice Genotypes and Related Consequences on Yield and Grain Quality Traits (2017)

Table 1: Effects of cadmium on rice yield and its parameter

Variety	Treatment	Panicles/pot	Spikelet number/pot	100-grain weight (g)	Seed setting rate (%)	Grain yield/pot (g)
V1	Cd0 Cd1 Cd2 Cd3	30.33 ± 0.33^{a} 23.66 ± 0.88^{b} 20.00 ± 0.57^{c} 17.33 ± 0.88^{d}	121.07 ± 0.58^{bc} 127.52 ± 3.88^{b} 142.34 ± 2.87^{a} 113.63 ± 5.25^{c}	23.97 ± 0.33^{a} 19.88 ± 0.38^{b} 19.03 ± 0.32 bc 18.1 ± 0.11 c	89.1 ± 0.11^{a} 85.963 ± 1.45^{b} 82.293 ± 0.74^{c} 79.92 ± 0.45^{c}	78.44 ± 1.40^{a} 51.48 ± 1.61^{b} 44.51 ± 0.48^{c} 28.35 ± 0.05^{d}
V2	Cd0 Cd1 Cd2 Cd3	27.67 ± 0.33^{a} 25.33 ± 0.33^{b} 23.66 ± 0.33^{c} 20.33 ± 0.66^{d}	116.35 ± 2.46^{c} 132.01 ± 2.39^{ab} 123.49 ± 2.58^{bc} 140.32 ± 7.90^{a}	23.60 ± 0.28^{a} 21.55 ± 0.17^{b} 19.05 ± 0.47^{c} 18.63 ± 0.19^{c}	92.32 ± 0.84^{a} 87.86 ± 1.49^{b} 86.883 ± 0.32^{b} 80.697 ± 1.15^{c}	70.12 ± 1.60^{a} 63.41 ± 2.69^{b} 48.31 ± 0.66^{c} 42.75 ± 1.38^{c}
V3	Cd0 Cd1 Cd2 Cd3	32.33 ± 0.33^{a} 31.66 ± 0.33^{a} 28.67 ± 0.33^{b} 26.66 ± 0.33^{c}	113.11 ± 2.03^{a} 111.66 ± 0.70^{a} 110.93 ± 0.14^{a} 98.58 ± 2.1^{5b}	24.98 ± 0.24^{a} 24.03 ± 0.12^{ab} 23.38 ± 0.47^{bc} 22.66 ± 0.33^{c}	93.79 ± 0.72^{a} 89.90 ± 0.25^{b} 88.12 ± 0.42^{c} 86.22 ± 0.43^{d}	85.63 ± 1.01^{a} 76.37 ± 0.19^{b} 65.5 ± 0.73^{c} 51.42 ± 2.10^{d}
V4	Cd0 Cd1 Cd2 Cd3	25.66 ± 0.33^{a} 23.33 ± 0.33^{b} 21.66 ± 0.33^{c} 19.66 ± 0.33^{d}	$\begin{array}{c} 131.33 \pm 3.60^b \\ 139.15 \pm 1.73^{ab} \\ 148.57 \pm 6.18^a \\ 150.92 \pm 3.7^{2a} \end{array}$	$22.44 \pm 0.67a$ 21.05 ± 0.49^{ab} 19.66 ± 0.22^{bc} 19.30 ± 0.60^{c}	90.29 ± 0.96^{a} 87.67 ± 1.03^{a} 83.54 ± 0.74^{b} 81.99 ± 0.47^{b}	68.37 ± 3.59^{a} 59.87 ± 1.46^{b} 52.87 ± 2.43^{bc} 46.95 ± 1.73^{c}
V5	Cd0 Cd1 Cd2 Cd3	27.66 ± 0.33^{a} 25 ± 0.5774^{b} 24.33 ± 0.66^{b} 18.33 ± 0.66^{c}	130.58 ± 0.53^{ab} 117.65 ± 0.60^{bc} 103.53 ± 11.81^{c} 147.21 ± 4.34^{a}	24.04 ± 0.50^{a} $23.44 \pm 0.10a$ 21.83 ± 0.56^{b} 19.65 ± 0.21^{c}	$89.70 \pm 0.55a$ 80.05 ± 0.77^{b} 77.13 ± 3.54^{b} 76.98 ± 1.52^{b}	77.9 ± 1.43^{a} 55.19 ± 1.42^{b} 41.94 ± 3.22^{c} 40.77 ± 1.36^{c}

Three replicated means (\pm SE) were calculated for each treatment. Values with different letters are significantly different at p<0.05. Cd0 = 0 mg Cd/kg, Cd1 = 50 mg Cd/kg, Cd2 = 100 mg Cd/kg, and Cd3 = 150 mg Cd/kg

Source: https://www.hindawi.com/journals/jchem/2017/1405878/abs

Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential (2016)

Table 1: Dry biomass (g/plant) of different plant tissues along with root length (cm) and total leaf area (cm²) of Eichhornia crassipes grown in different cadmium concentrations.

CdCl ₂ (mg L ⁻¹)	Day (d)	Root	Shoot	Leaf	Root length (cm)	Total leaf area (cm2)
Control	0 d 21 d	0.44 ± 0.002 1.58 ± 0.36	0.51 ± 0.003 2.13 ± 0.19	0.62 ± 0.009 2.35 ± 0.22	9.9 ± 0.264 20.3 ± 0.45	165.0 ± 8.88 311.4 ± 4.20
5	0 d 21 d	0.44 ± 0.002 0.86 ± 0.02* (- 45.56%)	0.51 ± 0.003 1.25 ± 0.25* (-41.31%)	0.62 ± 0.003 1.22 ± 0.19* (-48%)	9.9 ± 0.173 18.2 ± 0.50 (-10.34%)	165.6 ± 1.52 276.5 ± 7.31* (-11.21%)
10	0 d 21 d	0.44 ± 0.003 0.67 ± 0.01* (- 57.34%)	0.51 ± 0.003 0.76 ± 0.02* (-64.08%)	0.62 ± 0.003 0.83 ± 0.008* (- 64.46%)	9.9 ± 0.20 17.2 ± 0.37* (-15.27%)	165.6 ± 3.21 254.7 ± 10.14* (- 18.21%)
15	0 d 21 d	0.44 ± 0.003 0.55 ± 0.01* (-64.6%)	0.50 ± 0.002 0.61 ± 0.01* (-71.12%)	0.62 ± 0.006 0.72 ± 0.008* (-69.19%)	9.96 ± 0.251 15.4 ± 0.40* (-24.13%)	165.3 ± 3.20 225.9 ± 12.15* (- 27.45%)
20	0 d 21 d	0.44 ± 0.001 0.46 ± 0.01* (-70.75%)	0.50 ± 0.003 0.53 ± 0.01* (-75.16%)	0.62 ± 0.009 $0.65 \pm 0.01*$ (-72.17%)	9.9 ± 0.057 14.5 ± 0.20* (-28.57%)	164.66 ± 4.5 205.8 ± 4.32* (- 33.91%)

^{* =} significantly different from control at P < 0.05; values are mean \pm SD of 3 replicates; values in the parentheses include percent decrease in mean values as compared to the corresponding control values.

Source: http://journals.tubitak.gov.tr/biology/issues/biy-16-40-1/biy-40-1-7-1411-86.pdf

Table 2: Effect of cadmium treatments on leaf pigment contents of *Eichhornia crassipes* after 21 days

CdCl ₂	CdCl ₂ Chlorophyll (mg g ⁻¹ fresh weight)				
$(\mathbf{mg} \ \mathbf{L}^{-1})$	Ca	C_b	C_{a+b}	C_{x+c}	
0	6.15 ± 0.081	1.67 ± 0.143	7.83 ± 0.225	2.09 ± 0.035	
5	$5.69 \pm 0.09*$	$1.86 \pm 0.072**$	$7.55 \pm 0.159**$	$1.8 \pm 0.047*$	
10	$4.07 \pm 0.042*$	$1.30 \pm 0.132*$	5.38 ± 0.174 *	$1.49 \pm 0.022*$	
15	$2.27 \pm 0.218*$	$0.767 \pm 0.1*$	$3.04 \pm 0.122*$	$1.49 \pm 0.022*$	
20	$1.48 \pm 0.117*$	0.202 ± 0.096 *	1.68 ± 0.138 *	$0.687 \pm 0.042*$	

Ca= chlorophyll a; Cb= chlorophyll b; Ca + b= total chlorophyll; Cx + c = carotenoid. Values are mean \pm SD (n = 3); * = significantly different and ** = not significantly different at P < 0.05 at various doses of Cd for a particular plant pigment as compared to control values.

Table 3: Effect of cadmium treatments on leaf MDA and protein contents of *Eichhornia crassipes* after 21 days.

CdCl ₂ (mg L ⁻¹)	Control	5	10	15	20
MDA (µmol g ⁻¹ FW)	5.69 ± 0.463	8.3 ± 0.325**	20.51 ± 2.79*	25.98 ± 2.26*	$33.55 \pm 1.63^*$
Protein (mg g ⁻¹ FW)	24.32 ± 0.58	20.0 ± 1.0*	17.89 ± 0.84*	13.46 ± 0.46*	9.43 ± 0.51*

^{* =} significantly different and ** = not significantly different from control at P < 0.05; values are mean \pm SD of 3 replicates.

Table 4: Cadmium accumulation in different plant parts (roots, shoots, and leaves) of *Eichhornia crassipes* after 21 days.

CdCl ₂	Cadmium concentration (µg g ⁻¹ dry wt) in plant parts								
(mg L ⁻	Root	Shoot	Leaf	Whole plant					
1)									
5	846.6 ± 43.22	937.9 ± 61.84	850.2 ± 52.47	878.3 ± 51.68					
10	956.0 ± 43.44	986.0 ± 76.39	958.8 ± 68.24	966.9 ± 61.16					
15	1908.6 ±	1966.1 ±	$1908.6 \pm 5.72^*$	1927.8 ± 17.03*					
	18.88*	28.58^*							
20	921.97 ±	967.33 ±	848.22 ± 76.77	912.5 ± 40.46					
	38.13	21.79							

Mean \pm SD (n = 3); * indicates significance at P < 0.05 at different doses for a particular plant tissue.

Table 5: Bioconcentration factor (BCF), translocation factor (TF), and translocation efficiency (%) of cadmium in different parts of *Eichhornia crassipes*.

CdCl ₂ (mg L	BCF _{root}	BCF shoot	BCF leaf	BCF whole plant	TF	Efficiency (%)
5	169.3 ± 8.64	187.5 ± 12.3	170 ± 10.49	526 ± 31.0	1.0 ± 0.017	100.4 ± 1.76
10	95.6 ± 4.34	98.6 ± 7.63	95.8 ± 6.8	290 ± 18.35	1.00 ± 0.03	100.2 ± 3.2
15	127.2 ± 1.25	131.07 ± 1.9	127.2 ± 0.38	385 ± 3.40	1.0 ± 0.007	100 ± 0.78
20	46.09 ± 1.90	48.36 ± 1.08	42.41 ± 3.83	121 ± 33.76	0.92 ± 0.05	91.8 ± 5.3

Source: https://journals.tubitak.gov.tr/biology/issues/biy-16-40-1/biy-40-1-7-1411-86.pdf

Effect of cadmium on physiological parameters of cereal and millet plants—A comparative study (2016)

Table 1: Differential Cd assimilation and translocation ratio in wheat and kodo millet.

Cd concentration in µm	Triticum aestivum			Paspalum scrobiculatum			
	Cadmium assimilation (mg/kg)			Cadmium assimilation (mg/kg)			
	Root	Shoot	Shoot/Root Ratio	Root	Shoot	Shoot/Root Ratio	
10	14.50±1.24 ^a	1.79±0.40 ^a	1.79±0.40 ^a	73.28±0.88 ^a	7.32±0.44 ^a	0.0996	
20	11.08±1.46 ^b	2.45±0.64 ^a	0.22227	103.40±1.6 ^b	19.59±0.83 ^b	0.1986	
50	17.52±1.14°	6.43±0.31 ^a	0.3674	164.27±1.5°	57.33±2.83 °	0.3488	
100	46.29±2.58 ^d	30.00±1.9 ^b	0.6481	248.82±2.4 ^d	150.13±1.91 ^d	0.6028	
500	97.32±2.23 ^e	80.43±1.4°	0.8621	896.32±1.9 ^e	896.32±1.9 ^e	0.8182	

The values followed by different letters are significantly different at a significance level of p<0.05

Source: www.tandfonline.com/doi/full/10.1080/15226514.2016.1207608?scroll=top...true

Effect of cadmium on physiological parameters of cereal and millet plants—A comparative study (2016)

Table 1: Effect of Cd on induction of PCs in leaves, stems and roots of cabbage variety Pluto

Plant	Cd level	Concentrations of PCs and GSH ^a						
Part	(μg L ⁻¹)	PC ₂	PC ₃	PC ₄	GSH	PCs + GSH		
	(mmol thiol [-SH] kg ⁻¹ DW)							
Leaves	Control ^b	0a	0a	0a	2.37a	2.37a		
	500	0.20b	0.50b	0.46b	2.24a	3.40b		
Stem	Control ^b	0a	0a	0a	5.60a	5.60a		
	500	0.30b	0.25b	0.15b	5.50a	6.20b		
Roots	Control	0.50 ± 0.03	0.80 ± 0.03	0.55 ± 0.01	4.10 ± 0.15	5.95 ± 0.20		
	500	1.50 ± 0.12	2.50 ± 0.40	2.40 ± 0.30	4.85 ± 0.20	11.3 ± 0.80		

Plants were harvested after 4 weeks of Cd exposure. For a plant part, means with the same letter are not significantly different (P > 0.05). LSD comparisons are valid only within the one plant part and one constituent ^aEach value is the mean of four replicates

Table 2: Effect of cadmium on selected minerals in different parts of the cabbage variety, Pluto

Plant	Cd level	Measured element concentrations						
Part	(μg L ⁻¹)	(mg kg ⁻¹ DW)			—(% DW)—			
		Cd	Zn	Mn	Cu	Fe	Ca	S
Leaves	1 ^a	1.1a	64a	130a	13a	40a	4.29a	1.65a
	500	107b	36b	100b	11a	31b	3.94b	2.03b
Stems	1 ^a	0.5a	51a	20a	8a	28a	1.92a	0.62a
	500	41b	36b	13b	7a	24b	1.73b	0.60a
Roots	1 ^a	5.0a	260a	146a	319a	_b	1.19a	1.26a
	500	686b	173b	66b	302b	_b	1.03a	1.28a
Adequate foliar concentration ^c		20–200	25–200	5–15	30–200	1–3	0.3-0.7	

The plants were harvested after 4 weeks of Cd exposure. Each value is the mean of four replicates. Means with the same letter are not significantly different (P > 0.05). Comparisons are valid only within one plant part for the one constituent aThe concentration of Cd in the control treatment was due to background contamination bValues for Fe in roots are not reported, as they were inflated by surface oxide deposits

cBryson et al. (2014)

Source: https://link.springer.com/article/10.1007/s11356-015-5779-6#Tab2

^bCadmium in the control is due to background contamination of the hydroponic solution (1 μg L⁻¹)