Nickel

Title	Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah
Author Name	Antony Van Der Ent, Damien L.Callahan, Barry N. Noller, Jolanta Mesjasz-Przybylowicz, Wojciech J. Przybylowicz, Alban Barnabas & Hugh H. Harris
Journal Name	Scientific Reports
Year	2017
Volume and	7:41861
Issue	
Pages	1-21
Abstracts	The extraordinary level of accumulation of nickel (Ni) in hyperaccumulator plants is a consequence of specific metal sequestering and transport mechanisms, and knowledge of these processes is critical for advancing an understanding of transition element metabolic regulation in these plants. The Ni biopathways were elucidated in three plant species, <i>Phyllanthus balgooyi</i> , <i>Phyllanthus securinegioides</i> (Phyllanthaceae) and <i>Rinorea bengalensis</i> (Violaceae), that occur in Sabah (Malaysia) on the Island of Borneo. This study showed that Ni is mainly concentrated in the phloem in roots and stems (up to 16.9% Ni in phloem sap in <i>Phyllanthus balgooyi</i>) in all three species. However, the species differ in their leaves – in <i>P. balgooyi</i> the highest Ni concentration is in the phloem, but in <i>P. securinegioides</i> and <i>R. bengalensis</i> in the epidermis and in the spongy mesophyll (<i>R. bengalensis</i>). The chemical speciation of Ni2+ does not substantially differ between the species or between the plant tissues and transport fluids, and is unambiguously associated with citrate. This study combines ion microbeam (PIXE and RBS) and metabolomics techniques (GC- MS, LC-MS) with synchrotron methods (XAS) to overcome the drawbacks of the individual techniques to quantitatively determine Ni distribution and Ni2+ chemical speciation in hyperaccumulator plants.
Keywords	Hyperaccumulator, Biopathways, metabolomics techniques

Title	Nickel bioaccumulation by the chosen plant species
Author Name	Jacek Antonkiewicz, Czesława Jasiewicz, Małgorzata Koncewicz-Baran & Renata Sendor
Journal Name	Acta Physiol Plant
Year	2016
Volume and	
Issue	
Pages	38:40
Abstracts	Concentrations of ground-level ozone ([O3]) over much of the Earth's The investigations aimed at the evaluation of nickel bioaccumulation ability of plants from various families (Poaceae—maize, Fabaceae—field bean and Asteraceae—lettuce). The research was conducted under hydroponic conditions. The experimental design comprised ten objects differing with nickel concentrations in the solution (ranging from 0.0 to 10.0 mg Ni dm–3 of the nutrient solution). The parameters, assumed as the basis on which nickel bioretention by selected plant species was determined were: the yield, nickel content in various plant parts, uptake and utilization of this element by the plant, tolerance index (TI) and translocation factor (TF), the metal concentrations in the aboveground parts index (CI) and bioacummulation factor (BAF). On the basis of the obtained results it was found that, due to low tolerance of nickel, maize could be used as the indicator plant for the environment quality assessment.
Keywords	Bioaccumulation, Hydroponic, Heavy metals

Title	 Evaluation of nickel tolerance in <i>Amaranthus paniculatus</i> L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal - binding molecule content Fabrizio Pietrini, Valentina Iori, Alexandra Cheremisina, Nina I.
Author Name	Shevyakova, Nataliya Radyukina, Vladimir V. Kuznetsov, Massimo Zacchini
Journal Name	Environmental Science and Pollution Research
Year	2015
Volume and Issue	22, Issue 1
Pages	482-494
Abstracts	Among metals, Ni has been indicated as one of the most dangerous for the environment, and plants exposed to this metal are frequently reported to undergo a severe stress condition. In this work, the tolerance responses to different Ni concentrations at physiological and biochemical levels were evaluated in <i>Amaranthus paniculatus</i> L., a plant species previously characterised for their ability to phytoremove Ni from metal-spiked water. Results indicated a good metal tolerance of this plant species at environmentally relevant Ni concentrations, while clear symptoms of oxidative damages were detected at higher Ni concentrations, both in roots and leaves, by measuring lipid peroxide content. At the photosynthetic level, pigment content determination, chlorophyll fluorescence image analysis and gas-exchange parameter measurements revealed a progressive impairment of the photosynthetic machinery at increasing Ni concentrations in the solution. Regarding biochemical mechanisms involved in antioxidative defence and metal binding, antioxidative enzyme (ascorbate peroxidase, APX; catalase, CAT; guaiacol peroxidase, GPX; superoxide dismutase, SOD) activity, polyamine (PA) content, polyamine oxidase (PAO) activity and organic acid (OA) content were differently affected by Ni concentration in the growth solution. A role for GPX, SOD, PAs, and oxalic and citric acid in Ni detoxification is suggested. These results can contribute to elucidate the tolerance mechanisms carried out by plants when facing environmentally relevant Ni concentrations and to identify some traits characterising the physiological and biochemical responses of Amaranthus plants to the presence and bioaccumulation of Ni.
Keywords	Photosynthetic, Amaranthus, bioaccumulation, chlorophyll fluorescence

Iation in black gram induced by Nickel stressAuthor NameDas S, Samantaray S, Mohanty RC, Mohanty M, Pradha CJournal NameThe International Daily journalYear2015Volume and Issue27 : 97Pages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminou plant i.e. black gram [Vigna mungo (L.) Hepper] cultivation (PU31C and Shekhar1C). After exposure to different		
Author NameDas S, Samantaray S, Mohanty RC, Mohanty M, Pradha CJournal NameThe International Daily journalYear2015Volume and Issue27 : 97Pages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminou plant i.e. black gram [Vigna mungo (L.) Hepper] cultivation (PU31C and Shekhar1C). After exposure to different	Title	Photosynthetic response and proline bioaccumu-
CJournal NameThe International Daily journalYear2015Volume and Issue27 : 97Pages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminout plant i.e. black gram [Vigna mungo (L.) Hepper] cultivationPublic (PU31C and Shekhar1C). After exposure to different		lation in black gram induced by Nickel stress
CJournal NameThe International Daily journalYear2015Volume and Issue27 : 97Pages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminout plant i.e. black gram [Vigna mungo (L.) Hepper] cultivationPublic (PU31C and Shekhar1C). After exposure to different	Author Name	Das S, Samantaray S, Mohanty RC, Mohanty M, Pradhan
Year2015Volume and Issue27 : 97Pages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminout plant i.e. black gram [Vigna mungo (L.) Hepper] cultivation (PU31C and Shekhar1C). After exposure to different		• • •
Volume and Issue27 : 97Pages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminous plant i.e. black gram [Vigna mungo (L.) Hepper] cultivation (PU31C and Shekhar1C). After exposure to different	Journal Name	The International Daily journal
IssuePages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminous plant i.e. black gram [Vigna mungo (L.) Hepper] cultivation (PU31C and Shekhar1C). After exposure to different	Year	2015
Pages36-42AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminous plant i.e. black gram [Vigna mungo (L.) Hepper] cultivation (PU31C and Shekhar1C). After exposure to different	Volume and	27:97
AbstractsThe present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminous plant i.e. black gram [<i>Vigna mungo</i> (L.) Hepper] cultivation (PU31C and Shekhar1C). After exposure to different	Issue	
concentrations of nickel (Ni) on photosynthetic response and stress induced praline accumulation in a leguminou plant i.e. black gram [<i>Vigna mungo</i> (L.) Hepper] cultivat (PU31C and Shekhar1C). After exposure to different	Pages	36-42
i.e. PU31C and Shekhar1C showed significant changes in their photosynthetic response. Sekhar1C variety showed high chlorophyll content in seedlings treated with toxic N (200µM) when compared to Control and other variety PU31C variety showed four times more Chlorophy content than seedlings of control treatment. The present hydroponic study exhibited stimulatory effects of nickel of total chlorophyll content, carotenoid and increased prolim level after two weeks exposure period. Present preliminar	Abstracts	The present study assesses the impact of varying treatment concentrations of nickel (Ni) on photosynthetic responses and stress induced praline accumulation in a leguminous plant i.e. black gram [<i>Vigna mungo</i> (L.) Hepper] cultivars (PU31C and Shekhar1C). After exposure to different concentrations of toxic Ni2+, the two cultivars of <i>V. mungo</i> i.e. PU31C and Shekhar1C showed significant changes in their photosynthetic response. Sekhar1C variety showed high chlorophyll content in seedlings treated with toxic Ni (200μ M) when compared to Control and other variety. PU31C variety showed four times more Chlorophyll content than seedlings of control treatment. The present hydroponic study exhibited stimulatory effects of nickel on total chlorophyll content, carotenoid and increased proline level after two weeks exposure period. Present preliminary study indicates the tolerance nature of two green gram cultivars to toxic doses of Ni+2.
KeywordsNickel, Chlorophyll, Proline, Hydroponics	Keywords	

Title	Estimation of plant growth promoting potential of a nickel accumulating isolate obtained from Dhapa industrial wasteland (Kolkata, India) soil on Indian yellow mustard (<i>Brassica hirta</i>)
Author Name	Santanu Maitra and Pranab Kumar Banerjee
Journal Name	Int.J.Curr.Microbiol.App.Sci
Year	2015
Volume and	4:1
Issue	
Pages	765-772
Abstracts	Plant growth promoting bacteria (PGPB) are known to influence plant growth by various direct or indirect mechanisms. Present study was conducted with an aim to estimate the PGP potential of one nickel tolerant bacterial isolate from Dhapa industrial wasteland, Kolkata, India. Isolate I (Gram negative <i>coccobacilli</i>) was observed to tolerate and accumulate significant amounts of nickel and also have multiple Plant Growth Promoting (PGP) activities like IAA production and phosphate solubilization. Present study also shows that seeds of yellow mustard (<i>Brassica hirta</i>) inoculated with the test isolate individually, significantly enhanced root and shoot growth and also protected the plant from the various phytotoxic effects of nickel.
Keywords	Nickel, Accumulation, IAA Production, Phosphate Solubilization, Brassica hirta Bioremediation